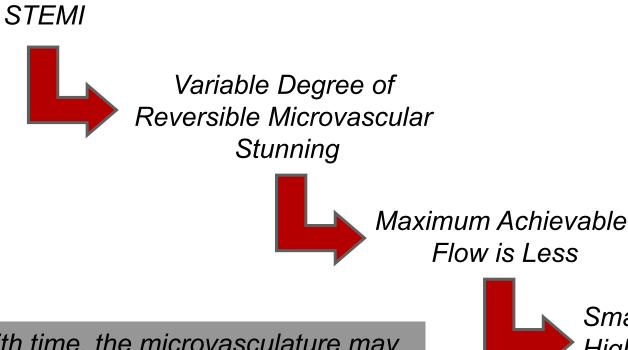
FFR and Acute Coronary Syndromes

William F. Fearon, MD Associate Professor Stanford University Medical Center

Overview:

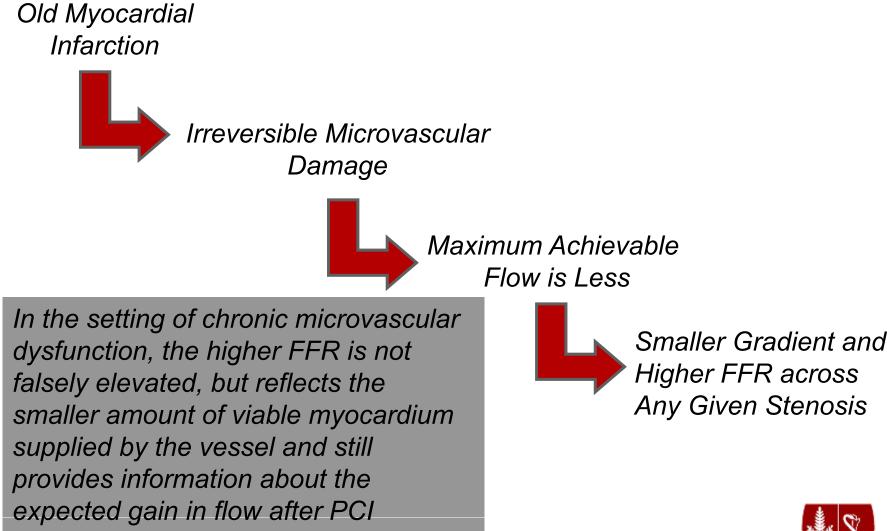
- STEMI
 - Acute
 - Chronic


- Culprit vessel
- Non-Culprit vessel

Non-STEMI

Acute

Acute Microvascular Damage and FFR



Smaller Gradient and Higher FFR across Any Given Stenosis

With time, the microvasculature may recover, maximum achievable flow may increase, and a larger gradient with a lower FFR may be measured across a given stenosis

Chronic Microvascular Damage and FFR

FFR in Acute STEMI (Culprit Vessel)

FFR after stenting in 33 AMI patients compared to 15 stable angina patients

IVUS Parameters	AMI	Angina	Р
Ref Lumen Area	7.45 ±2.4	6.49 ±1.6	NS
Min Lumen Area	5.28 ±1.7	5.03 ±1.1	NS
% Area Stenosis	27.3 ±9.3	25.76 ±13.1	NS
Pressure Parameter			
FFR	0.95 ± 0.04	0.90 ± 0.04	0.003

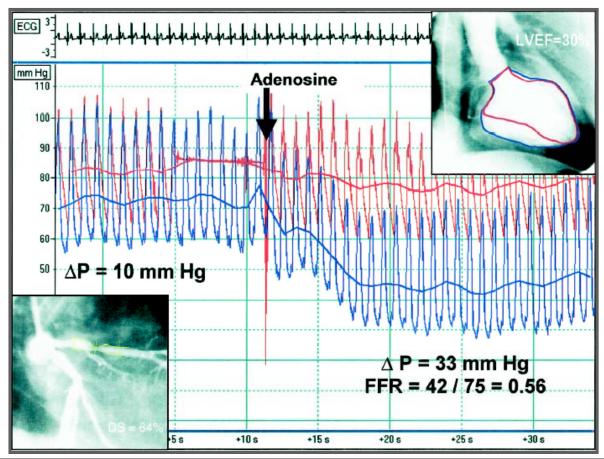
Cathet Cardiovasc Intervent 2002;57:452-459

FFR in Acute STEMI (Culprit Vessel)

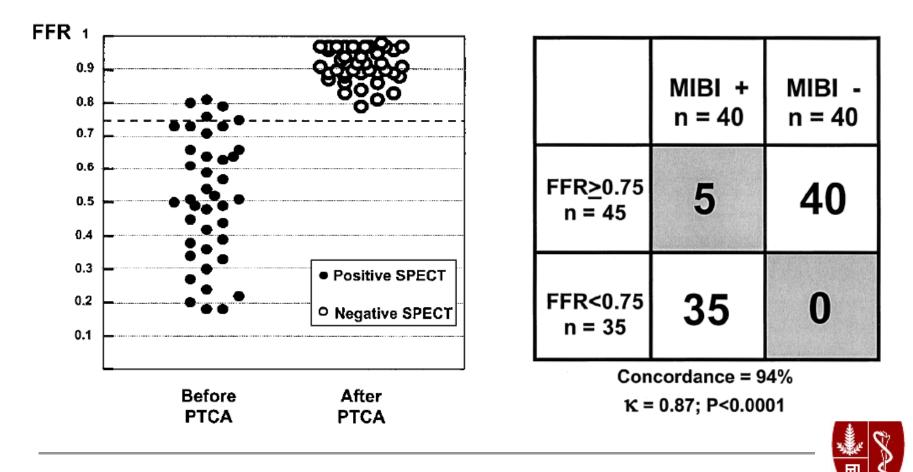
FFR after stenting in 33 AMI patients comparing those with TIMI 3 flow (n=23) to those with TIMI 2 flow (n=10)

IVUS Parameters	TIMI 3	TIMI 2	Р
Ref Lumen Area	7.69 ±2.6	6.89 ±1.8	NS
Min Lumen Area	5.48 ±1.7	4.86 ±1.7	NS
% Area Stenosis	26.3 ± 9.0	30.17 ±9.8	NS
Pressure Parameter			
FFR	0.93 ± 0.04	0.98 ± 0.02	<0.01

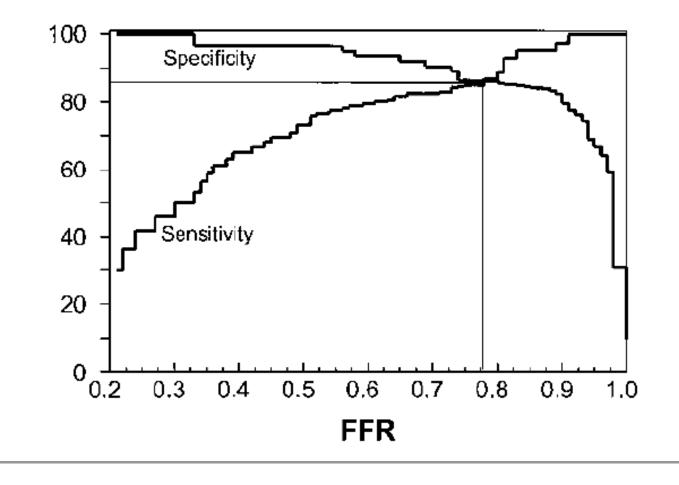
Cathet Cardiovasc Intervent 2002;57:452-459


Changes in flow with and without microvascular dysfunction

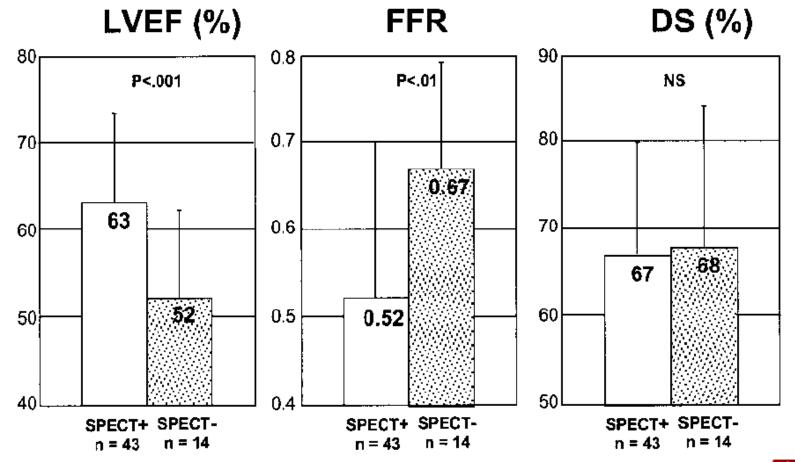
	MI	No MI	Р
Target lesion, n	22	21	
Pre-/postintervention, n	7/15	10/11	0.2
Diameter stenosis, %	43 ± 22	44 ± 16	0.9
MLD, mm	1.7 ± 0.8	1.6 ± 0.6	0.6
Length, mm	9.1 ± 4.0	7.3 ± 3	0.1
Reference diameter, mm	2.9 ± 0.5	2.8 ± 0.6	0.6
Flow velocity measurements			
APV (basal), cm/sec	17 ± 7	17 ± 8	0.8
APV (hyperemic), cm/sec	26 ± 13	36 ± 16	0.03
Coronary flow reserve	1.5 ± 0.3	2.1 ± 0.4	< 0.000
Flow (hyperemic), ml/min	37 ± 26	48 ± 22	0.03
Pressure measurements			
Gradient (hyperemic), mm Hg	13 ± 11	21 ± 13	0.05
FFR, %	82.6 ± 12.5	79.0 ± 11.7	0.3


Cathet Cardiovasc Intervent 2001;54:427-434

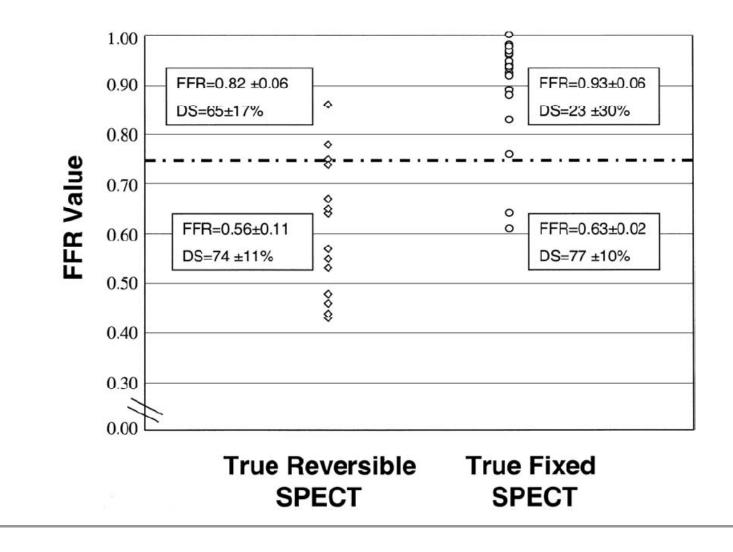
Comparison of FFR in 57 patients with an $MI \ge 6$ days old to SPECT imaging before and after PCI

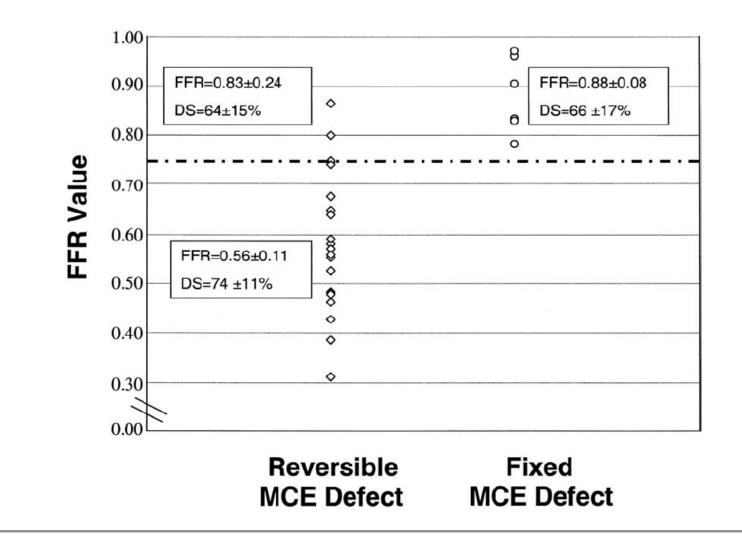


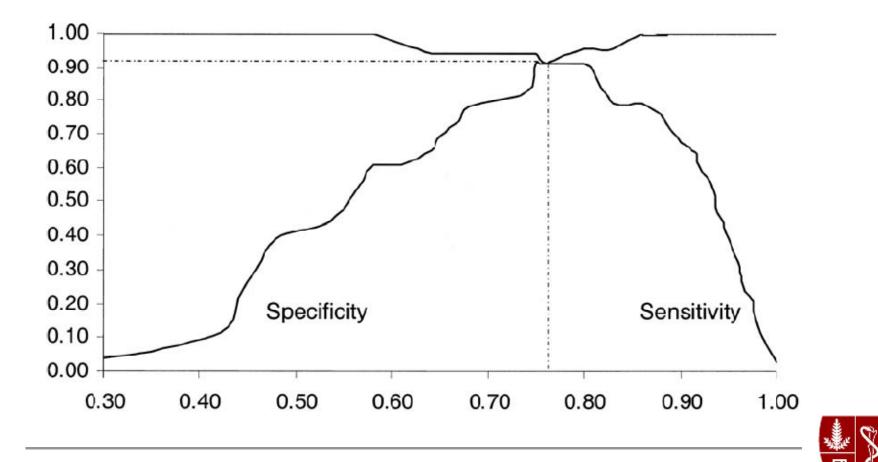
Comparison of FFR in 57 patients with an $MI \ge 6$ days old to SPECT imaging before and after PCI



Ideal FFR cutoff in the setting of old MI


Relationship between FFR and mass of myocardium at risk


- FFR and SPECT performed in 48 patients 3.7 days after MI
 - □ 73% had STEMI and had to be ≥3 days; ≥2 days for NSTEMI
- 23 patients also had myocardial contrast echo
- Follow-up SPECT was performed 11 weeks later to identify true positive and negatives



Samady, et al. J Am Coll Cardiol 2006;47:2187-2193.

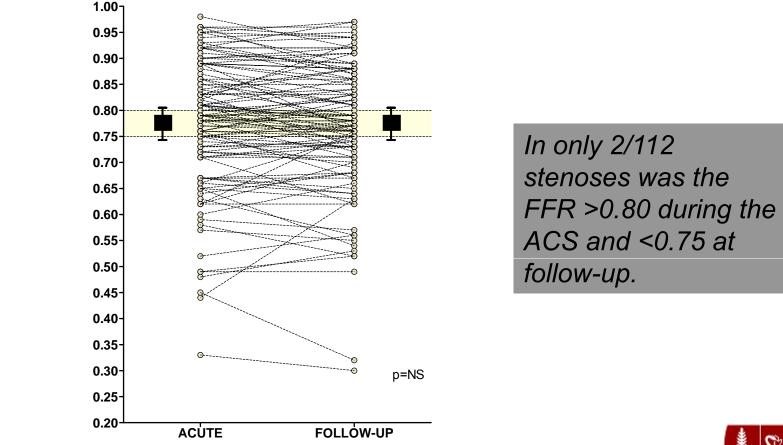
Samady, et al. J Am Coll Cardiol 2006;47:2187-2193.

Best FFR Cutoff is 0.78

Samady, et al. J Am Coll Cardiol 2006;47:2187-2193.

FFR during/after STEMI (Culprit Vessel)

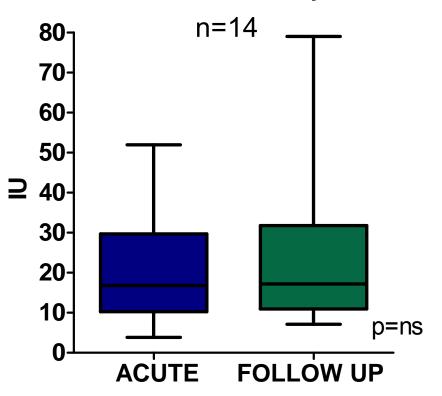
- How long do you have to wait for "microvascular stunning" to resolve and before you can get a reproducible FFR?
- Likely the time to recovery of the microvasculature is variable, depending on the size of the infarct, and can be as short as days, and as long as a week, or longer...


FFR STEMI (Non-Culprit Vessels)

During acute STEMI, is FFR measurement of non-culprit vessels reliable?

FFR STEMI (Non-Culprit Vessels)

101 patients with an acute coronary syndrome (75 STEMI, 26 NSTEMI) 112 non culprit stenoses FFR measured acutely and 35±24 days later



Ntalianis, et al. J Am Coll Cardiol Intv 2010;3:1274

FFR STEMI (Non-Culprit Vessels)

Microvascular resistance did not change from baseline to follow-up

Index of Microcirculatory resistance

FFR during NSTEMI

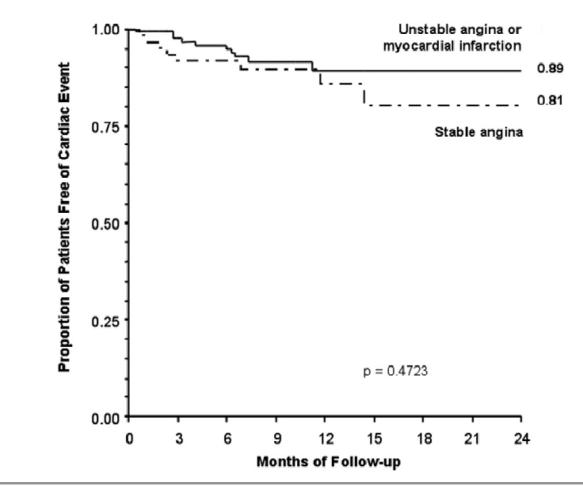
- Can we measure FFR in non ST elevation acute myocardial infarction?
 - In the culprit vessel?
 - □ In the non-culprit vessel?

FFR in NSTE ACS (Culprit Vessel)

70 patients with ACS and an intermediate lesion randomized to FFR or stress perfusion scan

	Group 1 (SPS) (n = 35)	Group 2 (FFR) (n = 35)
Age	55 ± 4	59 ± 6
Gender M/F	22/13	24/11
EF	53 ± 4	50 ± 4
MI without ST-segment elevation (n)	24	20
ST-segment changes (n)	16	14
ST-segment changes or T-wave changes (n)	20	18
Prior coronary artery disease	14	9
Hypertension (n)	26	25
Diabetes mellitus (n)	11	13
Hyperlipidemia (n)	22	19
Tobacco abuse (n)	15	20
Lesion		
Left anterior descending (n)	13	15
Circumflex (n)	10	9
Right coronary artery (n)	12	11
Minimal lumen diameter (mm)	1.51 ± 0.1	1.43 ± 0.1
Reference lumen diameter (mm)	3.1 ± 0.2	2.88 ± 0.2
% Diameter stenosis	49 ± 2	48 ± 2

FFR in NSTE ACS (Culprit Vessel)


Clinical Events at 1 Year Follow-Up

	Group 1 (SPS) (n = 34)	Group 2 (FFR) (n = 34)
Average follow-up (months)	12.0 ± 0.8	14.0 ± 1.0
Death	0	0
Angina		
No angina (n)	17	24
CCS classification of angina (n)		
1-2	17	10
3–4 (admitted to the hospital)	6	5
Stress perfusion scintigraphy	4	4
Negative (n)	4	4
Cardiac catheterization	2	3
Results (no change)	2	2
Disease progression	0	1
MI	1	1
CABG including target vessel	1	2
PCI	0	0

Leesar, et al. J Am Coll Cardiol 2003;41:1115-1121

FFR in NSTE ACS (Culprit Vessel)

201 consecutive patients with 50% stenosis (2/3 with ACS) in which intervention was deferred based on FFR

Potvin, et al. Am J Cardiol 2006;98:289-297

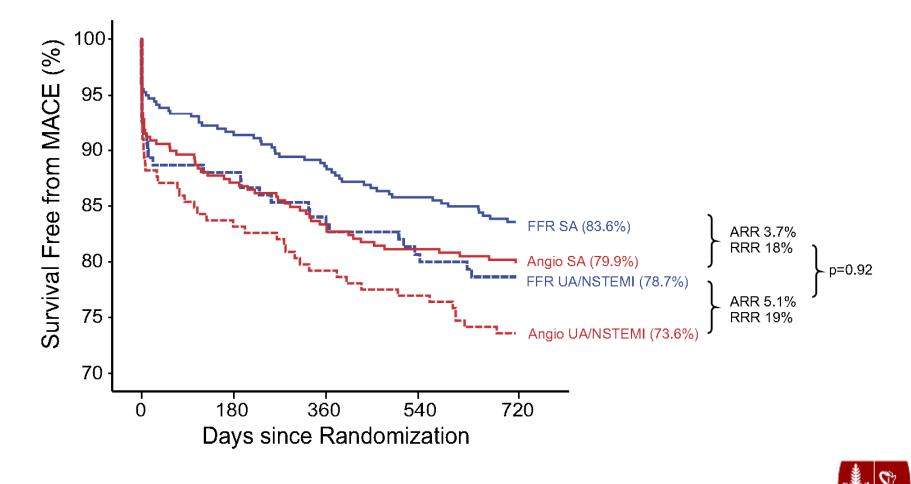
FFR NSTE ACS (Culprit + Non Culprit Vessel)

Fractional Flow Reserve versus

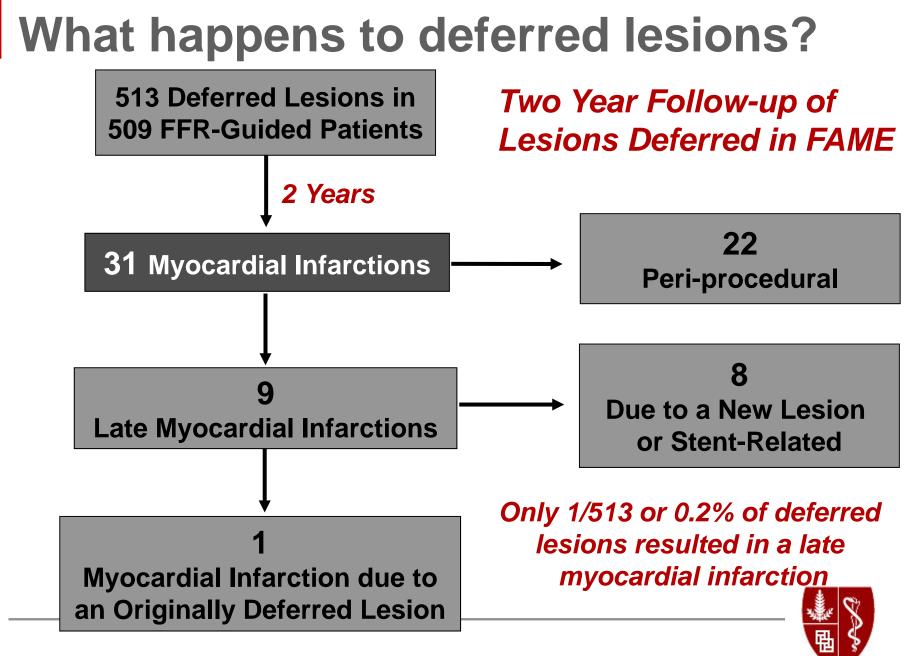
Angiography for

Multivessel

Evaluation


Baseline Characteristics

	Angio- Guided n = 496	FFR- Guided n = 509	P Value
Age, mean \pm SD	64±10	65±10	0.47
Male, %	73	75	0.30
Diabetes, %	25	24	0.65
Hypertension, %	66	61	0.10
Current smoker, %	32	27	0.12
Hyperlipidemia, %	73	72	0.62
Previous MI, %	36	37	0.84
NSTE ACS, %	36	29	0.11
Previous PCI , %	26	29	0.34
LVEF, mean \pm SD	57±12	57±11	0.92
LVEF < 50% , %	27	29	0.47 📢



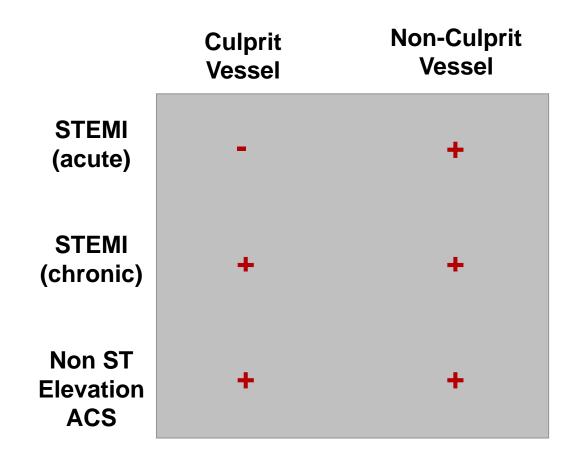
FFR NSTE ACS (Culprit + Non Culprit Vessel)

Comparison of MACE in FAME patients with and without ACS

Tonino, et al. J Am Coll Cardiol Intv 2011;4:1182-9.

Pijls, et al. J Am Coll Cardiol 2010;56:177-84

FFR in Acute Coronary Syndromes


Take Home Messages:

- FFR of the culprit vessel may be unreliable in the setting of STEMI, but can be accurately measured in the non-culprit vessel
- In a less acute MI setting, once microvascular stunning has decreased, FFR at a cut-point of 0.75-0.80 remains accurate
- For a given stenosis, FFR correlates inversely with the mass of viable myocardium supplied
- FFR appears accurate and safe in the setting of NSTE ACS for both culprit and non-culprit vessels

Summary

Indications for FFR in Acute Coronary Syndromes

