How Can We Tackle Small Annulus?

Young-Guk Ko, M.D.

Severance Cardiovascular Hospital, Yonsei University Health System,

Seoul, Korea

Disclosure

- Consulting:
 - Genoss, S&G
- Research grants:
 - Medtronic, Cook Medical, Boston Scientific, Otsuka Korea, Dong-A ST, Samjin Pharm
- Educational grants:
 - Medtronic, Cook Medical, Abbott, Cordis
- Proctoring:
 - Medtronic, Edwards

What is Small Aortic Annulus?

- No clear consensus regarding the cutoff value for defining SAA
- Annular diameter ≤23 mm
- Surgical prosthesis ≤ 21 mm
- Annular area <400 mm² or perimeter <72 mm
- \Rightarrow *Prevalence* 22~44% of the SVR cases
- \Rightarrow More common in southern Europe and Asia
- \Rightarrow Women make up ~90% of the small annulus population
- \Rightarrow Frequent in patients undergoing TAVR in SAV

Freitas-Ferraz A, Circulation. 2019;139:2685

Problems Associated with TAVR in Small Aortic Annulus

Patient prosthesis mismatch

=> increased mortality & morbidity

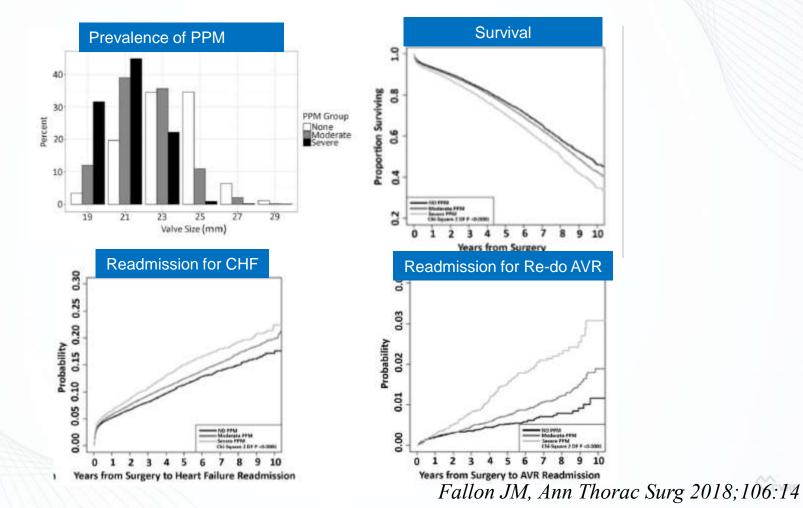
=> linked to an increase in structural valve deterioration (SVD)

- Potential risk of procedural complications
 - Annular rupture
 - Coronary obstruction
 - AV conduction disturbance/PPI

Patient-Prosthesis Mismatch

- When the effective orifice area (EOA) of a prosthetic valve is too small in relation to body size.
- Unable to meet the patient's cardiac output requirements
- Lower cut point values for obese patients (BMI ≥30 kg/m2) because the indexed EOA may overestimate the severity of PPM.

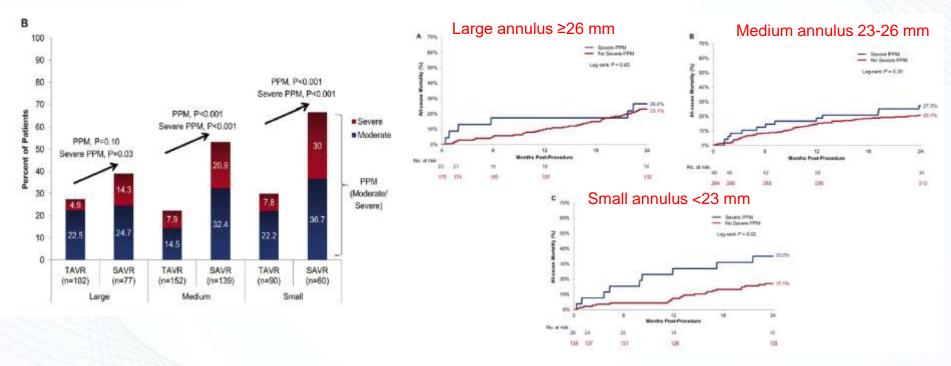
	Severe, cm ² /m ²	Moderate, cm ² /m ²
ASE guidelines ²⁶	<0.65	0.65-0.85
VARC-2 ¹⁰⁵	<0.65	0.65-0.85
BMI \geq 30 kg/m ²	<0.60	0.60-0.70
EACVI recommendations ⁸⁰	< 0.65	0.65-0.85
BMI ≥30 kg/m ²	<0.55	0.55-0.70
VARC 3 ⁶	≤0.65	0.66-0.85
BMI \geq 30 kg/m ²	< 0.55	0.55-0.70


TABLE 3 Definitions for Prosthesis-Patient Mismatch

PPM is characterized by

- high transprosthetic velocity and gradients
- normal EOA
- small indexed EOA
- normal leaflet morphology and mobility

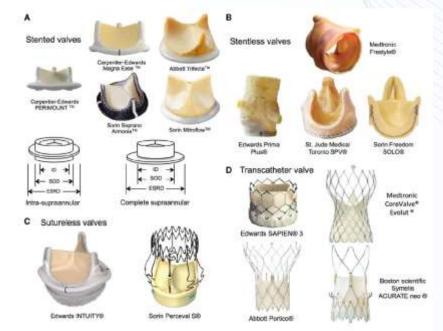
PPM after AVR Decreased Long-term Survival and Increased Readmission Rates for HF and Re-OP



28th TCTAF

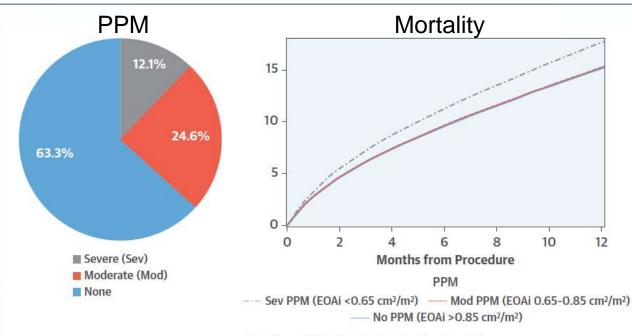
Impact of Annular Size on Outcomes After Surgical or Transcatheter AVR

Study population from CoreValve US Pivotal High Risk Trial


All-cause mortality

Deeb GM, Ann Thorac Surg 2018;105:1129

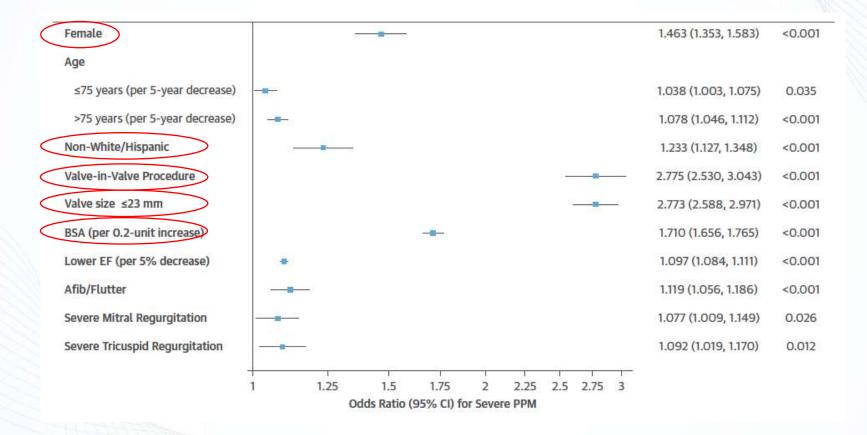
Superior Hemodynamic Profile with TAVR vs SAVR


- Systematic transcatheter valve oversizing
 - ~20% for self-expanding valves
 - ~10% for balloon-expanding valves
- Absence of a sewing ring
- Thin struts

Freitas-Ferraz A, Circulation. 2019;139:2685

TVT Registry: Incidence and Effect on Survival of Severe PPM After TAVR

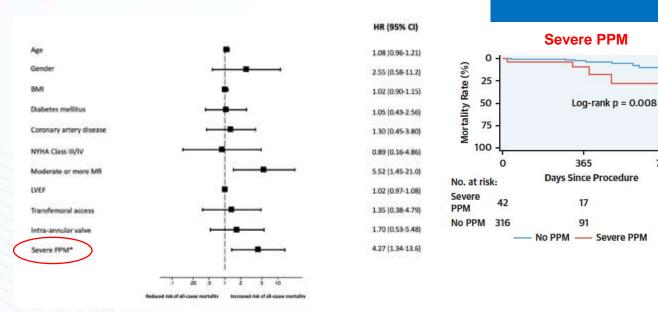
PPM was associated with higher mortality and HF rehospitalization

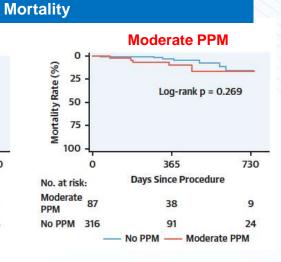


Number at Risk Adjusting for Baseline Covariates:

	Day O	Month 4	Month 8	Month 12
No PPM	23,635	21,080	16,734	13,136
Mod PPM	8,983	7,995	6,277	4,831
Sev PPM	4,152	3,626	2,976	2,130

Herrmann HC, JACC 2018;72:2701


Predictors of Severe PPM



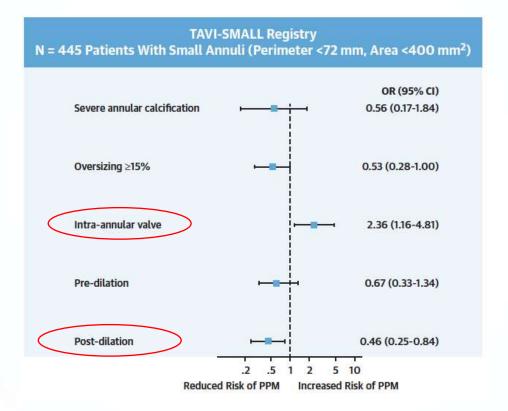
Herrmann HC, JACC 2018;72:2701

28th TCTAI

TAVI-Small Registry (SEV): Predictors of Mortality after TAVR

730

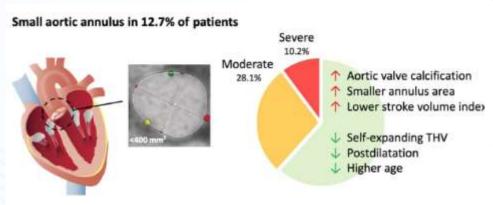
4

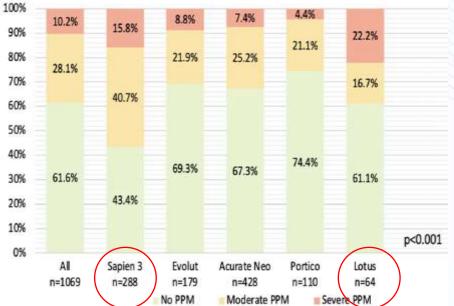

24

Leone PP, JACC Intv. 2021;14:1218

28th TCTAP

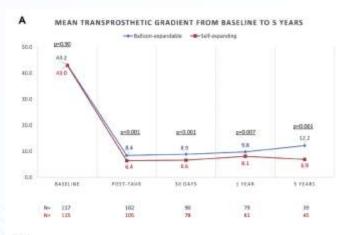
CVRF


TAVI-Small Registry: Predictors of PPM for Self-expanding Valves

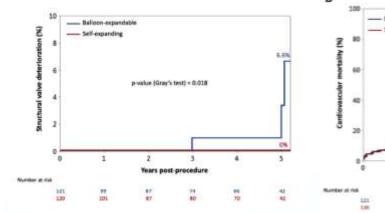

Leone PP, JACC Intv. 2021;14:1218

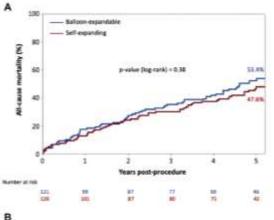
Risk Factors of PPM after TAVR

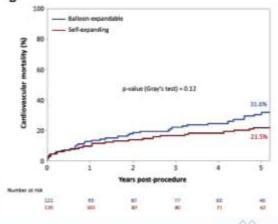
N=8411, from 4 German centers



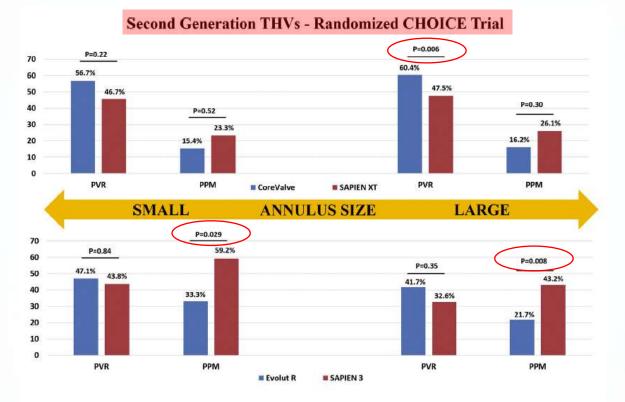
38.3% with prosthesis-patient mismatch after TAVI


Voigtläender L, Clin Res Cardio 2021;110:1957


Balloon-Expandable (Sapien XT) vs. Self-Expanding (CoreValve) Valves: CHOICE Randomized Clinical Trial



	Balloon-Expandable Valve (n = 121)	Self-Expanding Valve (n = 120)	p Value
Bioprosthetic valve dysfunction	28 (22.5)	26 (20.9)	0.91
Components			
SVD	6 (6.6)	0 (0.0)	0.018
Moderate SVD	4 (5.6)	0 (0.0)	0.047
Severe SVD	2 (0.9)	0 (0.0)	0.20
NSVD	17 (17.8)	23 (26.7)	0.20
Moderate/severe PPM	14 (15.9)	13 (16.0)	1.0
Moderate/severe PVL	3 (2.5)	10 (8.5)	0.08
Valve thrombosis	6 (7.3)	1 (0.8)	0.06
Endocarditis	2 (1.6)	4 (3.4)	0.39



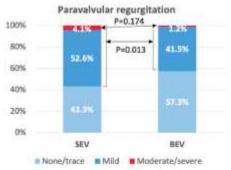
Abdel-Wahab M, JACC Intv 2020;13:1071

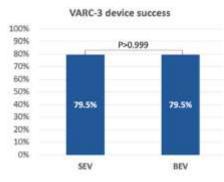
Rates of PVR and PPM According to Aortic Annulus Size

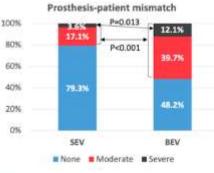
Third Generation THVs - Non-Randomized CHOICE-Extend Registry

Abdelghani M, JACC Intv. 2018;11:2507 Pivarot P, JACC Intv 2018;11:2519

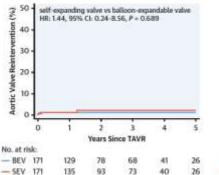
Evolut R vs. Sapien 3 in Japanese patients with a small aortic annulus: The OCEAN-TAVI registry

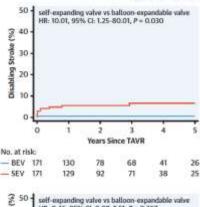

Hase H, Catheter Cardiovasc Interv. 2021;97:E875

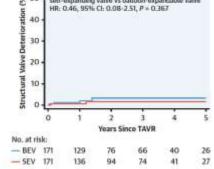

28th TCTAP

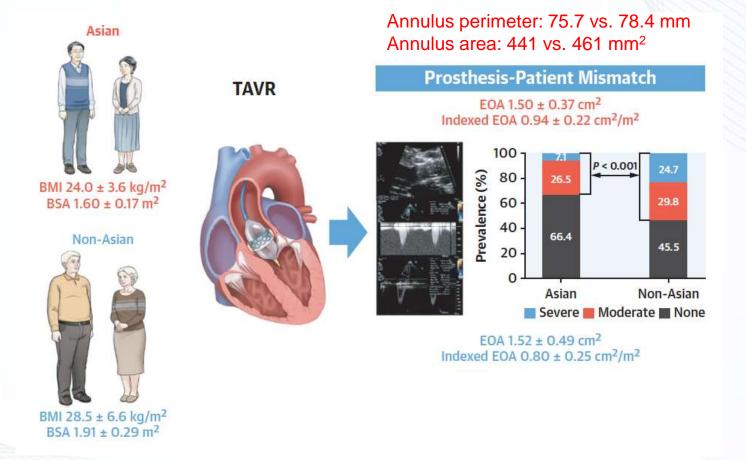

BEV vs. SEV in Patients with Small Annuli

Matched cohort from Bern TAVI registry



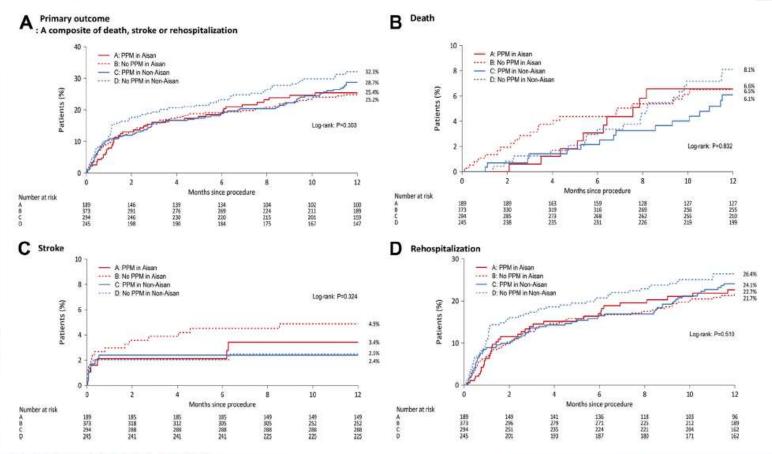






Okuno T, JACC Intv. 2023;16:429

28th TCTAP


PPM: Asian vs. Non-Asian

N=1,101 from Asan medical center & 2 US centers

Park H, J Am Coll Cardiol Intv 2021;14:2670

Clinical Outcomes According to PPM and Race

Park H, J Am Coll Cardiol Intv 2021;14:2670

Bioprosthetic AV Hemodynamic: Evidence Gaps

Bioprosthetic Aortic Valve Hemodynamics: Definitions, Outcomes, and Evidence Gaps

JACC State-of-the-Art Review

 TABLE 2
 Summary of Reasons for Discordance Between

 Echocardiographic and Invasive Hemodynamic Measurement of
 Bioprosthetic Valve Function

Echocardiographic

Failure to align Doppler sector parallel to maximal velocity

Simplified Bernoulli equation fails to account for

- Laminar/average flow with lower velocity adjacent to vessel wall
- b. Proximal LV velocity
- c. Variability of contraction coefficient
- Nonconvective forces of flow acceleration, viscosity, and convective acceleration

Not corrected for pressure recovery

Invasive hemodynamic

Inaccuracies introduced by

- a. Fluid-filled catheters
- b. Use of pigtail instead of end-hole catheters
- c. Improper positioning within LV and aorta

Timing of measurements immediately post-TAVR

TABLE 4 Summary of Reasons for Discrepancy in Effects of Severe PPM on Outcomes Severe PPM on Outcomes

Reasons why the reported incidence of PPM varies after AVR

Method of EOA calculation (measured vs predicted)

Correction or not for obesity

Timing of measurement (immediate vs later)

Effect of underlying flow state

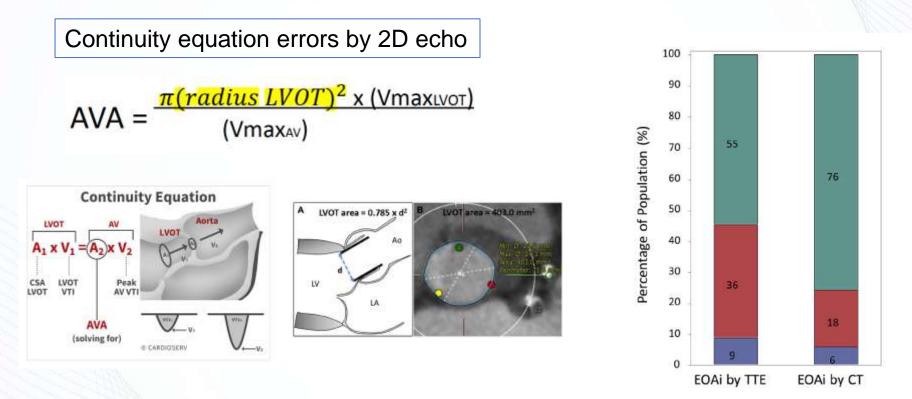
Method of gradient determination (echocardiographic vs hemodynamic)

Reasons why the effects of severe PPM on outcomes are conflicting

Measurements and calculations differ as above

Incomplete correction for confounding and competing outcome variables

Paravalvular aortic regurgitation

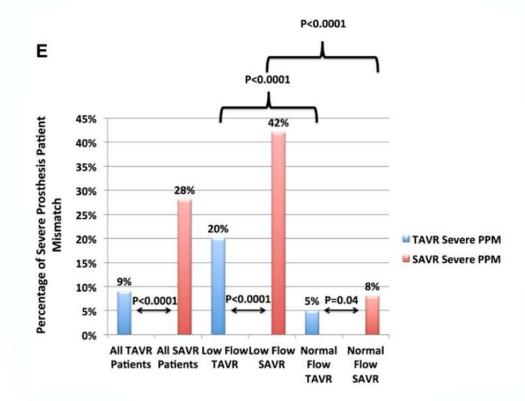

Low flow state

Older patients or other survival limitations

Underpowered analyses

Limited follow-up (1 year may not be sufficient)

CT-Defined Prosthesis–Patient Mismatch Downgrades Frequency and Severity of PPM


No PPM

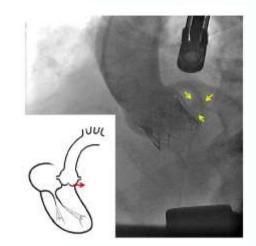
Moderate PPM

Mooney J, JACC Intv 2017;10:1578

Severe PPM

Impact of Flow on PPM Following TAVR and SAVR

Abbas AE, Circ Cardiovasc Imaging 2021;14:e012364


CVRF

Rare Complications Related to Small Annulus

Coronary Obstruction B 45 p<0.01* 40 33.4 33.4 32.3 Aortic root (mm) 35 27.8 30 25 20 Coronary Apfalter et al Tops et a Wahtar et al Tops et al Akhtar et a (35) Obstruction (33) (34) (33) (34)Patients with aortic Patients without aprile abarin main itenosi

Ribeiro HB, JACC Cardiovasc Interv. 2013;6:452 Annular Rupture

- Oversized ballooning
- Especially when calcified

Pasic M, JACC Cardiovasc Interv. 2015;8:1

Take Home Messages

- Small aortic annulus is prone to develop PPM after TAVR or SAVR.
- Diagnosis of PPM based on TTE is often inaccurate.
- Self-expanding valves especially with supra-annular design show superior hemodynamics than balloon-expanding valves .
- However, the impact of PPM on clinical outcomes after TAVR appears to be inconsistent.
- If severe PPM is expected after TAVR, self-expanding valves need to be preferred in cases of young and physically active patients and patients with low LVEF, severe LVH, or significant MR.
- Otherwise, selection of valves for small annuli doesn't need to be different than for large annuli.