Stents NOT so fast for lower limb revascularization!

Lawrence A. Garcia, MD *Chief, Section Interventional Cardiology and Vascular Interventions Director, Vascular Medicine St. Elizabeth's Medical Center Tufts University School of Medicine Boston, MA*

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

Company

- iDev, Covidien, TriReme
- Covidien, Boston Scientific, Angiosculpt, Pathway(MedRad)
- Arsenal, Primacea, TissueGen, CV Ingenuity, Spirox, Scion Cardiovascular
- None
- None
- None
- None

Why not?

- To date the current default technology is stenting
- To date the meaningful studies have evaluated 5-6 cm lesions and only 2 studies have tested long lesions closer to 20 cms that we consider "real world" cases
- The gorilla in the room is restenosis
 - In-stent restenosis vs de-novo restenosis
 - Focal vs diffuse
 - Recurrent vs recurrent
- Alternative therapies have been shown to be just as durable and safe as DES and in some cases better!

Current endovascular data

	Patients (n)	Device	Lesion length (cm)	1 year primary patency (%) (PSVR)
MIMIC	81	ΡΤΑ	NA	NA
ABSOLUTE	104	Stent	10.2	63 (2.5)
RESILIENT	137	Stent	6.3	81 (2.4)
VIBRANT	76	Stent graft	19.6	53 (2.5)
VIPER	119	Stent graft	19.0	73(2.5)
ZilverPTX	240	DES-SES	5.4	83 (2.0)
THUNDER	54	DCB	7.4	74 (2.4)
LEVANT	50	DCB	8.1	78 (2.5)
IN-PACT	301/220	DCB	8.9	90 (2.4)

- 2:1 randomized single blinded study DCB vs PTA alone
- 1 year results presented of 5 year study
- Lesions under 18 cm
 - Occlusions under 10 cm
 - RB 2-4 enrolled
- 331 randomized (all subjects) ITT 301 patients
- Provisional stenting listed in all subjects

1. With symptoms of claudication and/or rest pain and angiographic evidence of SFA/PPA stenosis

2. Pre-dilatation mandatory for all subjects in IN.PACT SFA II phase only

Baseline characteristics

	IN-PACT	РТА	Р
	n=220 subjects (221 lesions)	n=111 subjects (113 lesions)	
Lesion Type De-novo Restenotic	95.0% (209/220) 5.0% (11/220)	94.6% (105/11) 5.4% (6/111)	0.875
Run off vessels 0	3.3% (7/212)	4.5% (5/112)	0.76
1	13.7% (29/212)	26.8% (30/112)	< 0.05
2	41.5% (88/212)	33.0%)37/112)	0.15
3	41.5% (88/212)	35.7% (40/112)	0.34
Prox popliteal involvement (%)	6.8% (15/221)	7.1% (8/113)	1.00
Lesion length (cm)	8.94±4.89	8.81±5.12	0.81
Total occlusions (%)	25.8% (57/221)	19.5% (22/113)	0.22
Severe calcification (%)	8.1% (18/221)	6.2% (7/113)	0.66
RVD (mm)	4.65±0.84	4.68±0.83	0.73
MLD pre (mm)	0.90±0.78	0.93±0.77	0.71
Diameter stenosis pre (%)	81.1±15.5	81.3±13.7	0.95

All ITT, 12 month patency

Directional atherectomy

SilverHawk

Key Study Design Elements

• Study Design and Oversight:

- Prospective, non-randomized, global study
- 800 subjects enrolled at 47 centers
- CEC and Steering Committee oversight and CEC adjudicaiton
- Angiographic and Duplex core laboratory analyses

Inclusion Criteria

- RCC 1-6
- $\geq 50\%$ stenosis
- Lesion lengths up to 20cm
- Reference Vessel $\geq 1.5 \text{ mm and} \leq 7.0 \text{ mm}$

• Exclusion Criteria

- Severe calcification
- In-stent restenosis
- Aneurysmal target vessel

Study Design & Primary Endpoints

800 patients 47 centers

Claudicants (RCC 1-3) 598 patients* CLI (RCC 4-6) 201 patients

Primary patency by Duplex US at 12 mos Freedom from major unplanned amputation at 12 mos

Key Study Endpoints

Claudicants		Primary Endpoint: Primary Patency at 12 Months (PSVR <u><</u> 3.5)		Secondary Endpoint: Primary Patency at 12 Months (PSVR <u><</u> 2.4)	
		Patency	LL (cm)	Patency	LL (cm)
All (n=743)		82%	7.5	78%	7.5
Diabetic (n=345)		80%	7.6	77%	7.6
Non-Diabetic (n=398)		83%	7.4	78%	7.4
CLI	F	Primary Endpoint: Freedom from Major Unplanned Amputation of the Target Limb at 12 Months			
All (n=201)	95%				

Primary Patency in Subgroups

Subgroup	Claudicants (n=743)			
	Patency (PSVR <u><</u> 2.4)	Lesion Length (cm)		
All (n=1022)	78%	7.5		
By Lesion Length				
< 4 cm (n=318)	81%	2.2		
4-9.9 cm (n=418)	83%	6.5		
≥ 10 cm (n=283)	67%	14.4		
SFA Only By Lesion Length				
< 4 cm (n=184)	78%	2.3		
4-9.9 cm (n=253)	83%	6.5		
≥ 10 cm (n=232)	65%	14.6		

Effective treatment for all lesion lengths

12 Month Primary Patency Rates from DEFINITIVE LE

DEFINITIVE AR Study Design

Purpose: assess and estimate the effect of treating a vessel with directional atherectomy + DCB (DAART) compared to treatment with DCB alone Registry arm for severely calcified lesions created to limit bail-out stenting (and therefore variables) in randomized arm.

* **D**irectional **A**therectomy + **A**nti-**R**estenotic **T**herapy

Minimum Lumen Diameters

DAART resulted in a significantly larger minimum lumen diameter (MLD) following the protocol-defined treatment (4.27 mm vs. 3.78 mm, P = 0.045)

Fewer stents placed with DAART procedure vs. DCB

^{1.} Werk, M., et al., Circ Cardiovasc Interv, 2012. 5(6): p. 831-40.

2. Tepe, G., et al., N Engl J Med, 2008. 358(7): p. 689-99.

3. Werk, M., et al., Circulation, 2008. 118(13): p. 1358-65

4. Micari, A., et al., JACC Cardiovasc Interv, 2012. 5(3): p. 331-8.

5. Scheinert, D., 56 Month Reesults of the LEVANT I Trial. TCT. 2010. Washington, DC

6. Scheinert, Advance 18 PTX Study 6 Month Resutls. LINC 2013, Leipzig, Germany

7. Cioppa, A., et al., Cardiovasc Revasc Med, 2012.

SC1196092013A

18 |

Comparisons

	Lesion length (mm)	PSVR	Patency (%)	
RESILIENT	63	2.5	81	
ZILVER PTX	54	2.0	83	
Levant I	81	2.5	78	
THUNDER	74	2.4	74	
IMPACT	89	2.4	89	
DEFINITIVE LE < 4 cm	22	2.4	81	
DEFINITIVE LE 4 – 9.9 cm	65	2.4	83	

Comparisons

	Lesion length (mm)	PSVR	Patency (%)
VIBRANT	19.6	2.5	53
VIPER	19.0	2.5	72
ZILVER PTX registry	11.0	2.5	80
ABSOLUTE	10.2	2.5	63
In-Pact	8.9	2.4	90
DEFINITIVE LE 10 cm and up	14.4	2.4	67

Comparing non-stent technologies at 12 months

Stents not so fast!

- Drug coated balloon technology is safe and effective
- IN-Pact has shown benefit at 1 year higher than any other trial to date in a level 1 randomized protocol at near 9 cm LL.
- **DEFINITIVE LE** proved atherectomy safe & effective at 12 months
 - Effective for short, medium and long lesions in claudicants & CLI patients
- **DEFINTIVE AR** has completed enrollment—data release 2014
- Initial signal suggests an potential role for DCB with atherectomy that may obviate the need for stenting as an upfront need for our patients with complex peripheral vascular disease
- Opportunity for re-therapy remains open to the operator and patient if no endoprosthesis is left behind at the index procedure.
- Overall cost benefit needs assessment but remember repeat revascularization for ISRS may not benign and only once