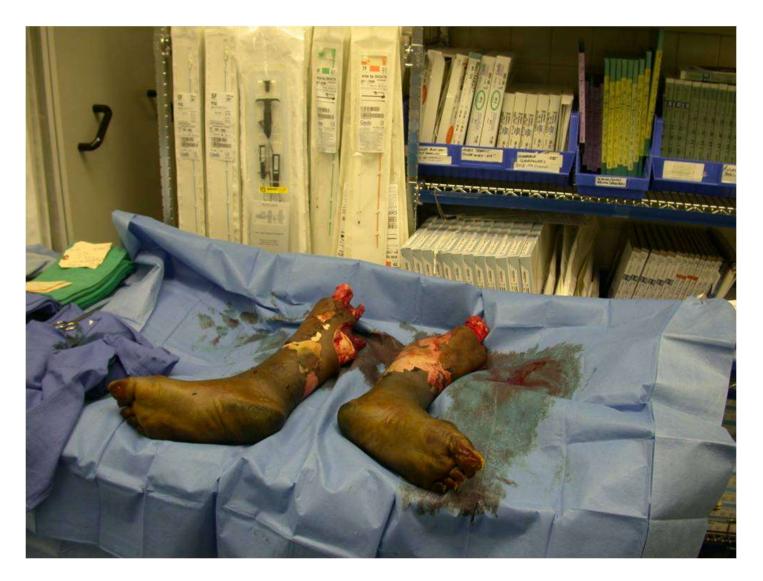
The Angiosome Concept in Real Practice -How to Make Revascularization Strategies-

Kansai Rosai Hospital, Cardiovascular Center

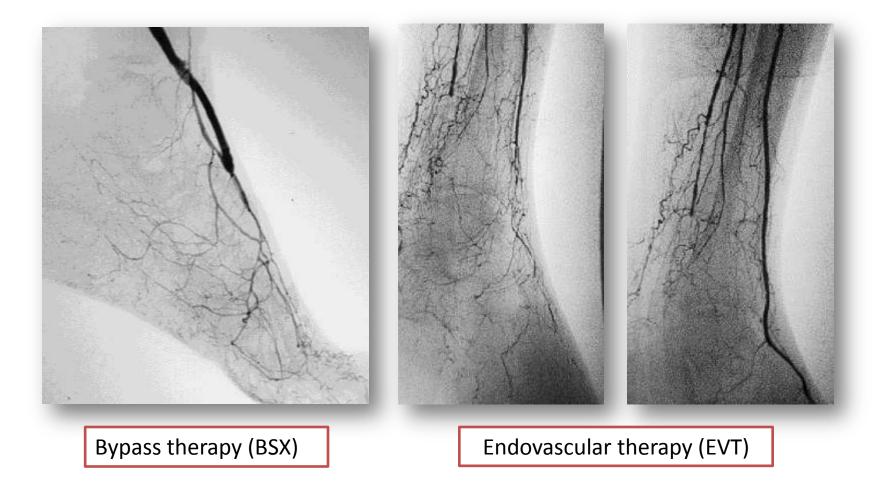
Osamu Iida, Masaaki Uematsu, Shin Okamoto, Tomoharu Dohi, Kiyonori Nanto Kokura Memorial Hospital, Department of Cardiology Yoshimitsu Soga, Hiroyoshi Yokoi, Masakiyo Nobuyoshi Saiseikai Yokohama-city Eastern Hospital, Department of Cardiology Keisuke Hirano, Masatsugu Nakano, Toshiya Muramatsu Hyogo College of Medicine, Cardiovascular Division Daizo Kasawaki Sendai Kosei Hospital, Department of Cardiology Kenji Suzuki, Naoto Inoue Shinshu University Hospital, Department of Cardiology Yusuke Miyashita


Definition of CLI (critical limb ischemia) -Terminal Stage of Peripheral Artery Disease-

Persistently recurring ischemic pain requiring analgesia for > 2 weeks and ankle systolic pressure< 50mmHg and/ or toe systolic pressure< 30mmHg</p>

Ulceration or gangrene of the foot or toes and ankle systolic pressure
70mmHg and/ or toe systolic pressure < 50mmHg

Major amputation



Critical limb ischemia (CLI)

Recommendation 24. Optimal treatment for patients with CLI
Revascularization is the optimal treatment for patients with CLI.

Revascularization for the patients critical limb ischemia (CLI)

Meta-analysis of infrapopliteal angioplasty for chronic critical limb ischemia

Recently, endovascular therapy (EVT) has become commonplace for below the knee (BTK) lesion in patients with critical limbs ischemia (CLI) because it achieve similar limb salvage to bypass therapy (BSX).

Result	1 month	6 months	1 year	2 years	3 years	
Primary patency		Carl Marcala March 444			7.8	
PTA	77.4 ± 4.1	65.0 ± 7.0	58.1 ± 4.6	51.3 ± 6.6	48.6 ± 8.0	
Bypass	93.3 ± 1.1	85.8 ± 2.1	81.5 ± 2.0	76.8 ± 2.3	72.3 ± 2.7	
P	<.05	<.05	<.05	<.05	<.05	
Secondary patency					0.000.000	
PTA	83.3 ± 1.4	73.8 ± 7.1	68.2 ± 5.9	63.5 ± 8.1	62.9 ± 11.0	
Bypass	94.9 ± 1.0	89.3 ± 1.6	85.9 ± 1.9	81.6 ± 2.3	76.7 ± 2.9	
P	<.05	<.05	<.05			
Limb salvage						
PTA	93.4 ± 2.3	88.2 ± 4.4	86.0 ± 2.7	83.8 ± 3.3	82.4 ± 3.4	1 Aleren
Bypass	95.1 ± 1.2	90.9 ± 1.9	88.5 ± 2.2	85.2 ± 2.5	82.3 ± 3.0	Allin Here Day
Patient survival						
PTA	98.3 ± 0.7	92.3 ± 5.5	87.0 ± 2.1	74.3 ± 3.7	68.4 ± 5.5	
Bypass	NA	NA	NA	NA	NA	

Romiti Met al J Vasc Surg 2008;47:975-81

Infrapopliteal Percutaneous Transluminal Angioplasty Versus Bypass Surgery as First-Line Strategies in Critical Leg Ischemia

A Propensity Score Analysis

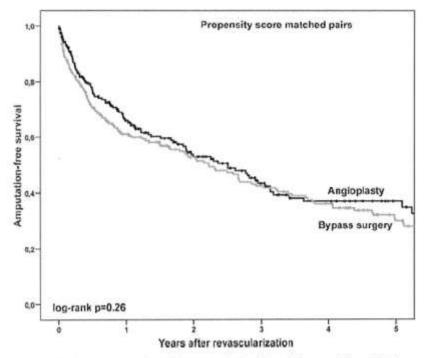
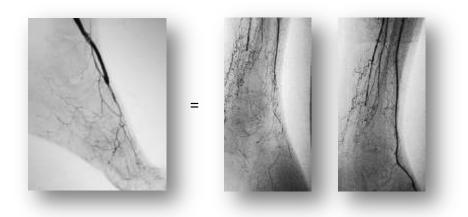



FIGURE 1. Amputation-free survival after infrapopliteal PTA and bypass surgery for CLI in the overall population and in 208 propensity-score-matched pairs.

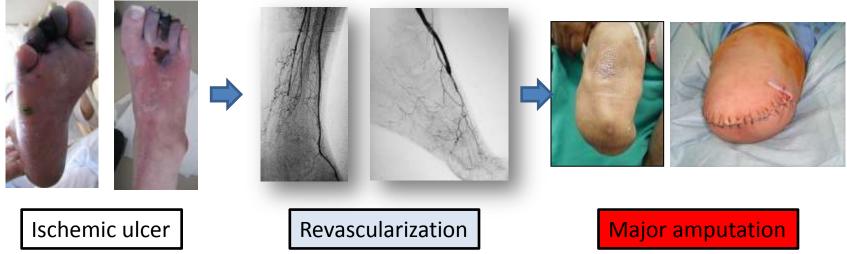
In propensity-score-matched pairs, PTA and bypass surgery (BSX) achieved similar 5-year amputation-free survival (BSX: 29.9% vs.PTA: 36.9%, p=0.26)

Ann Surg 2010;252:765-773

Learn From ESC 2011 guideline

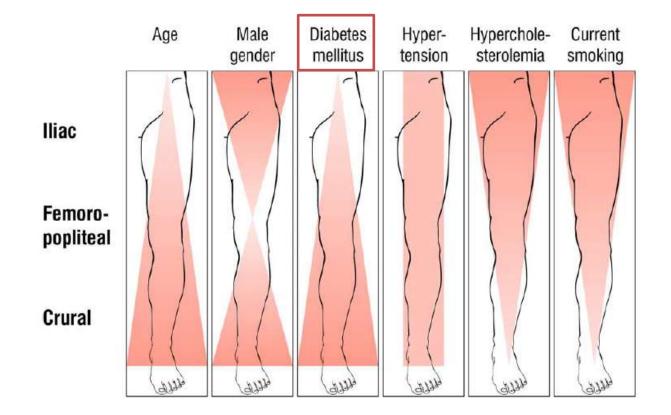
Recommendations for revascularization in patients with infrapopliteal lesions

Recommendations	Classa	Levelb
When revascularization in the infrapopliteal segment is indicated, the endovascular-first strategy should be considered.	lla	с
For infrapopliteal lesions, angioplasty is the preferred technique, and stent implantation should be considered only in the case of insufficient PTA.	lla	с

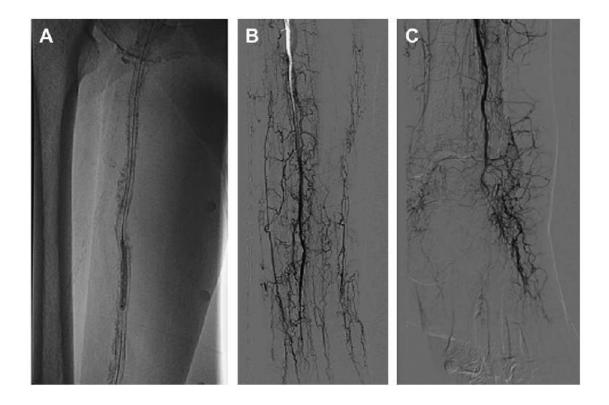

^aClass of recommendation.

^bLevel of evidence.

PTA = percutaneous transluminal angioplasty.


We should discuss on the quality of revascularization

Nevertheless, it is well known that success in obtaining good flow to the pedal arch does not always result in limb salvage. Dorros et al. Circulation. 2001;104:2057-62.
Indeed, major amputation has been reported to be necessary in approximately 15% of patients with ischemic ulcers of the lower limbs despite a patent bypass.


Berceli et al. J Vasc Surg. 1999;30:499-508.

Association of Cardiovascular Risk Factors with Pattern of Lower Limb Atherosclerosis in 2659 Patients Undergoing Angioplasty

Eur J Vasc Endovasc Surg. 2006: 31;59–63

Renal Insufficiency is Independently Associated with a Distal Distribution Pattern of Symptomatic Lower-limb Atherosclerosis

Diffuse severe calcification along the SFA (A), occlusion of the distal ATA and proximal PA and complete occlusion of the PTA (B), occlusion of the plantar and dorsal arterial arches at the foot level (C) Eur J Vasc Endovasc Surg.2010;39:591-596

74 years, Male, Non-heeling ulcer at the heel (R5) DM, ESRD on HD

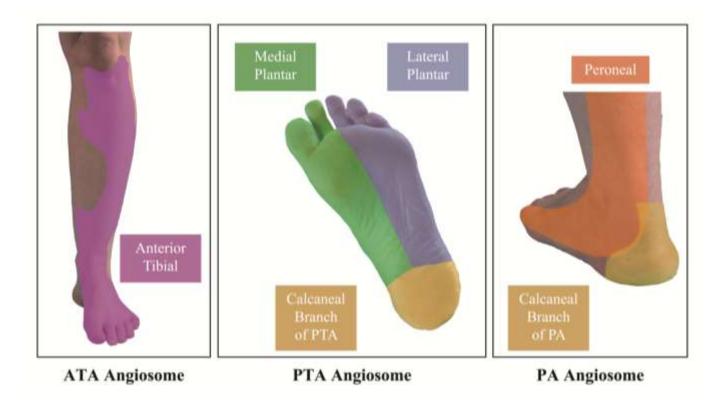
Severe stenosis presnted at ATA to DPA Poor flow to the calcaneal region was observed. (from DPA-pedal arch)

74 years, Male, Non-heeling ulcer at the heel (R5) DM, ESRD on HD

Angioplasty for ATA-DPA

Poor flow to **calcaneal region** despite ATA-DPA revascularization (1-straight line)

74 years, Male, Non-heeling ulcer at the heel (R5) DM, ESRD on HD



Major amputation (BK amputaion)

Angiosome based revascularization concept is clinically important? or not ?

Alexandrescu VA. J Endovasc Ther. 2008;15:580-93. Iida O et al. Catheter Cardiovasc Interv. 2009;75:830-6.

Case: 64 y/o male


Risk factors

DM, ESRD on dialysis **Preoperative lower limb examination** ABI: Right 1.27 <u>Skin perfusion Pressure</u> Dorsum side: 26 mmHg Plantar side: 54 mmHg

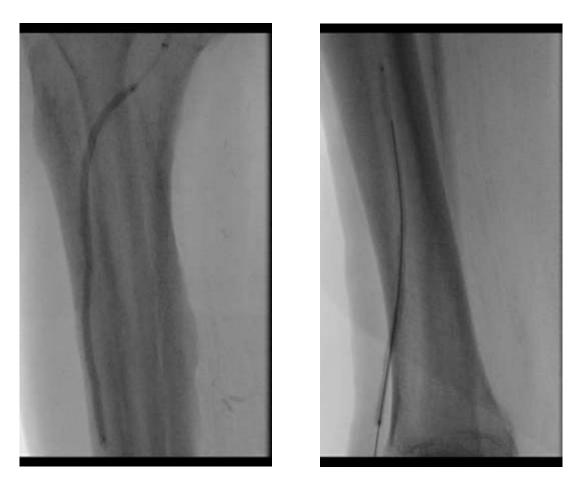
Laboratory examination WBC 6600, CRP 0.8

Case: 64 y/o male

ATA occlusion

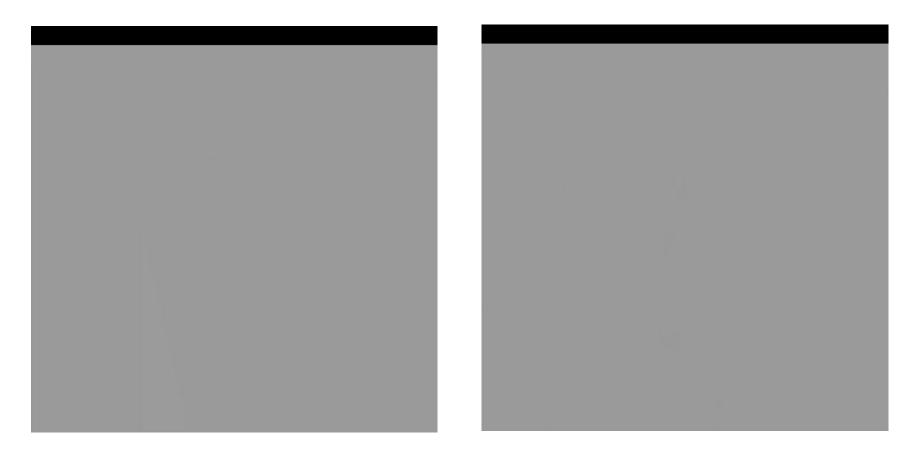
Which arteries should we treat?

Ulcer/gangrene located This ulcer was supplied at dorsum side of the foot.



Target lesion was ATA-dorsalis pedis artery.

Anterior Tibial


ATA Angiosome

Endovascular Therapy for ATA-DPA

Angioplasy (3.0*120mm)

Endovascular Therapy for ATA-DPA

ATA to DPA 100% \rightarrow 0% (angioplasty alone)

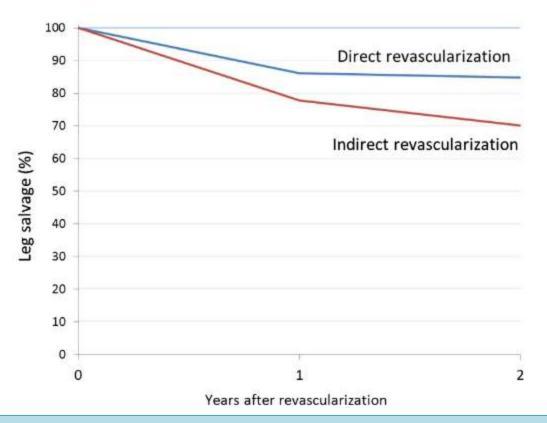
Endovascular Therapy for ATA-DPA

After procedure, angiography for assessing below-the-ankle artery should be conducted to confirm direct perfusion to the ulcer.

Case: 64 y/o male

Postoperative lower limb examination

<u>ABI:</u> Right 1.08 <u>Skin perfusion Pressure</u> Dorsum side: 70 mmHg Plantar side: 58 mmHg <u>Laboratory examination</u> WBC 5500, CRP 0.1

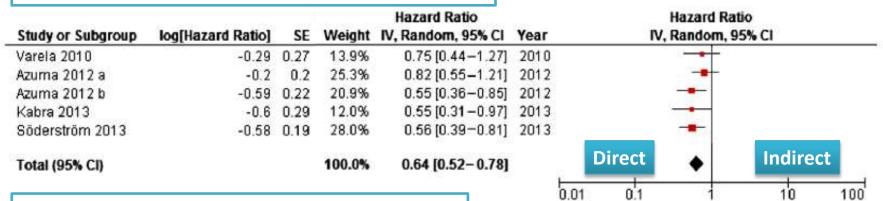

Angiosome-targeted Lower Limb Revascularization for Ischemic Foot Wounds: Systematic Review and Meta-analysis

Characteristics of observational studies evaluating the outcome after direct versus indirect revascularization for ischemic tissue lesions of the foot.

Author	Year of	Type of	Treatment	Disease	No.	limbs	Follow-up
	publication	study	method	stage	Direct	Indirect	(months)
Varela	2010	retrospective	Endo/Surg	ABI<0.50/TP < 50, wound	45	31	24
Alexandrescu	2011	retrospective	Endo	Diabetic ischemic wound	134	98	54
Blanes Orti	2011	retrospective	Endo	Rutherford 5-6	18	16	21
Azuma	2012	retrospective	Surg	Rutherford 5-6	126	92	24
lida	2012	retrospective	Endo	AP<70/TP < 50, wound	173	153	48
Ferrufino-Mérida	2012	prospective	Endo	CLI, wound	23	9	6
Söderström	2013	retrospective	Endo	Diabetic ischemic wound	121	129	12
Kabra	2013	prospective	Endo/Surg	Rutherford 4-6	39	25	6
Lejay	2013	retrospective	Surg	Diabetic ischemic wound	36	22	48

Biancari F, Juvonen T. Eur J Vasc Endovasc Surg. 2014 in press.

Angiosome-targeted Lower Limb Revascularization for Ischemic Foot Wounds: Systematic Review and Meta-analysis



WHAT THIS PAPER ADDS

The results of this meta-analysis suggest that, when feasible, direct revascularization of the foot angiosome affected may improve wound healing and limb salvage rates compared with indirect revascularization.

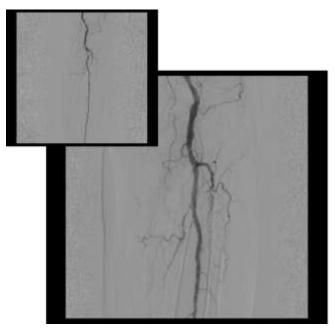
Angiosome-targeted Lower Limb Revascularization for Ischemic Foot Wounds: Systematic Review and Meta-analysis

Forest plot for effectiveness in wound healing

Forest plot for effectiveness in **limb salvage**

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Random, 95% Cl	Year	Hazard Ratio IV, Random, 95% Cl
Varela 2010	-0.28	0.5	12.7%	0.76 [0.28-2.01]	2010	
Alexandrescu 2011	-0.65	0.4	15.1%	0.52 [0.24-1.14]	2011	
Blanes Ortí 2011	-0.59	0.88	6.6%	0.55 [0.10-3.11]	2011	
Ferrufino-Mérida 2012	-4.16	0.92	6.2%	0.02 [0.00-0.09]	2012 -	
lida 2012	-0.36	0.25	19.0%	0.70 [0.43-1.14]	2012	
Kabra 2013	-0.69	0.67	9.4%	0.50 [0.13-1.86]	2013	
Lejay 2013	-1.17	0.42	14.6%	0.31 [0.14-0.71]	2013	
Söderström 2013	-0.48	0.36	16.2%	0.62 [0.31-1.25]	2013	••-
Total (95% CI)			100.0%	0.44 [0.26-0.75]		Direct 💊 Indirect
					-	.005 0.1 1 10 200 ours direct revasc. Favours revasc

Biancari F, Juvonen T. Eur J Vasc Endovasc Surg. 2014 in press.


Favours direct revasc. Favours indirect revasc.

Issue of clinical setting (practice) in Angiosome concept

	Verela C et al. Vasc & Endovasc Surgery 2010	Alexandrescu V et al. J Endovasc Ther 2011	lida O et al. J Vasc Surg 2011	Söderström M et al. J Vasc Surg 2012
Country	Spain	Belgium	Japan	Finland
Subjects (N)	76	232	369	250
Revascularization strategy	Surgical (n=41)	Endovascular therapy	Endovascular	Endovascular
	Endovascular (n=35)	only	therapy only	therapy only
Direct vs. Indirect revascularization	DR: 59% (45/76)	DR: 62% (134)	DR: 54% (200)	DR: 48% (121)
	IR: 41% (31/76)	IR: 38% (89)	IR: 46% (169)	IR: 52% (129)
Limb salvage rate	93% vs. 72%	89% vs. 76% (P=0.04)	82% vs. 68%	86% vs. 76%
(DR vs. IR)	(P=0.02)		(P=0.01)	(P=0.09)

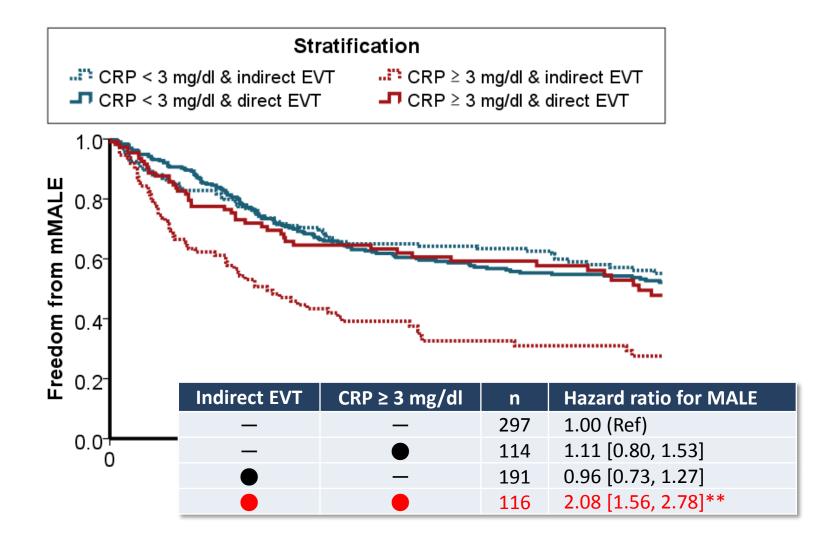
- In the clinical setting, revascularization for ischemic wounds through their specific source artery is not always successful because of technical barriers and lesion severity
- Approximately 40-50 % of patients were reluctantly treated with indirect revascularization (IR)

Discrepancy from theory to practice in Angiosome concept

IR (indirect revascularization)

Limb salvage

- Consequently, moderate limb salvage rates (68-76%) were obtained by indirect revascularization (IR) in earlier studies
- However, it remains unclear which patients derive the most clinical benefit from direct revascularization (DR)

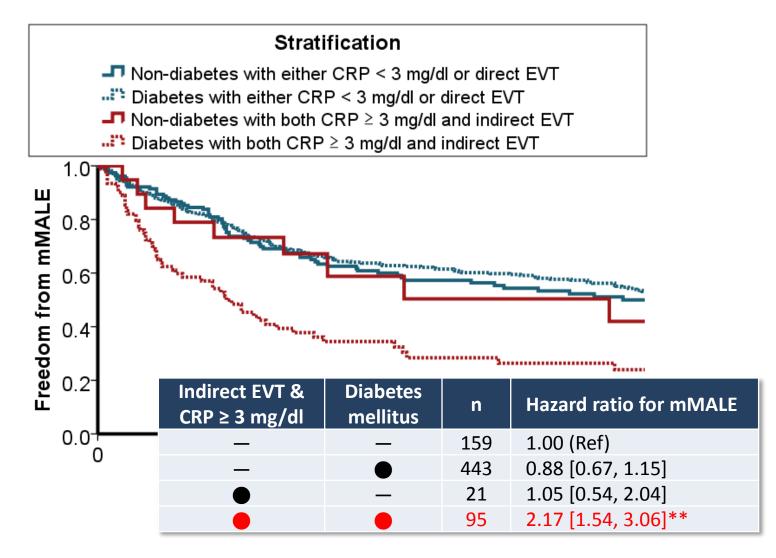

We should seek determinants of patients with CLI who derive the most clinical benefit from **direct revascularization (DR)**

-Interaction between indirect EVT (endovascular therapy) and clinical risk factors-

	Unadjusted ha for MAI	Interaction effect p value	
	Yes (with risk)	No (without risk)	pvalue
Age ≥ 80 years	1.17 [0.66, 2.09]	1.31 [1.04, 1.65]	0.701
Male gender	1.40 [1.08, 1.83]	0.95 [0.65, 1.38]	0.087
Non-ambulatory status	1.20 [0.88, 1.63]	1.26 [0.93, 1.71]	0.781
Serum albumin < 3.0 g/dl	1.86 [1.12, 3.08]	1.14 [0.90, 1.45]	0.084
Diabetes mellitus	1.34 [1.05, 1.72]	1.00 [0.65, 1.54]	0.209
Hypertension	1.16 [0.89, 1.50]	1.56 [1.05, 2.30]	0.251
Hyperlipidemia	1.18 [0.78, 1.78]	1.29 [1.00, 1.66]	0.829
Smoking	1.11 [0.78, 1.58]	1.35 [1.03, 1.77]	0.401
Chronic renal failure	1.34 [1.04, 1.72]	1.24 [0.81, 1.90]	0.820
Coronary artery disease	1.15 [0.86, 1.53]	1.41 [1.01, 1.95]	0.346
Cerebrovascular disease	1.65 [1.06, 2.57]	1.13 [0.88, 1.45]	0.121
Rutherford 6	1.39 [0.94, 2.05]	1.10 [0.84, 1.43]	0.223
CRP ≥ 3 mg/dl	1.84 [1.28, 2.66]	0.96 [0.73, 1.27]	0.004
Three-vessel BK disease	1.31 [0.90, 1.90]	1.25 [0.96, 1.63]	0.802
Calcification	1.27 [0.99, 1.65]	1.25 [0.84, 1.86]	0.984
No below-the-ankle runoff	0.97 [0.65, 1.45]	1.35 [1.04, 1.74]	0.169
Overall	1.2		

lida O, et al. Eur J Vasc Endovasc Surg. 2013.

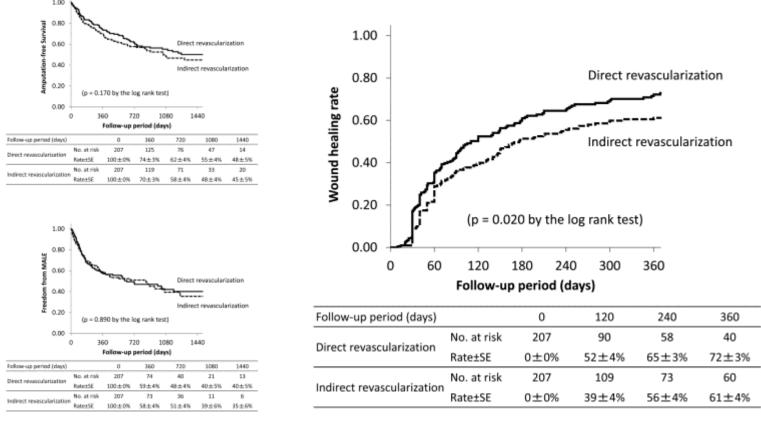
Indirect EVT increased risk for MALE only in patients with CRP ≥ 3 mg/dl



lida O, et al. Eur J Vasc Endovasc Surg. 2013.

-Interaction between "indirect EVT for CLI with CRP ≥ 3" and other clinical risk factors-

	Unadjusted hazard ratio o CLI with CRP ≥ 3 mg/ in each subg	Interaction effect p value	
	Yes (with risk)	No (without risk)	
Age ≥ 80 years	1.27 [0.50, 3.20]	2.11 [1.59, 2.79]	0.318
Male gender	2.17 [1.56, 3.02]	1.77 [1.13, 2.79]	0.452
Non-ambulatory status	1.90 [1.34, 2.70]	2.16 [1.42, 3.29]	0.735
Serum albumin < 3.0 g/dl	2.71 [1.62, 4.52]	1.81 [1.30, 2.51]	0.124
Diabetes mellitus	2.43 [1.81, 3.27]	1.07 [0.55, 2.07]	0.021
Hypertension	2.11 [1.54, 2.89]	2.05 [1.25, 3.36]	0.900
Hyperlipidemia	1.87 [1.13, 3.11]	2.25 [1.65, 3.09]	0.585
Smoking	2.37 [1.54, 3.64]	1.92 [1.37, 2.70]	0.505
Chronic renal failure	2.21 [1.63, 3.02]	1.95 [1.15, 3.33]	0.740
Coronary artery disease	2.02 [1.42, 2.87]	2.18 [1.45, 3.29]	0.691
Cerebrovascular disease	1.88 [1.05, 3.37]	2.09 [1.55, 2.81]	0.731
Rutherford 6	1.86 [1.24, 2.81]	1.59 [1.09, 2.31]	0.270
Three-vessel BK disease	2.07 [1.29, 3.33]	2.09 [1.51, 2.88]	0.915
Calcification	2.26 [1.66, 3.07]	1.64 [0.94, 2.85]	0.323
No below-the-ankle runoff	1.80 [1.17, 2.78]	2.11 [1.49, 2.98]	0.681
Overall	2.06 [1.58, 2		


Indirect EVT for CLI with CRP ≥ 3 mg/dl increased risk for mMALE only in diabetic patients-

lida O, et al. Eur J Vasc Endovasc Surg. 2013.

Background

- We previously reported favorable impact of angiosome-oriented revascularization on limb prognosis in patients with critical limb ischemia (CLI) complicated with both diabetes and wound infection.
- The current study investigated the impact of angiosome-oriented revascularization on clinical outcomes in CLI patients excluding those with both diabetes and wound infection.

Conclusion: In propensity matching analysis, complete wound healing rate was higher in DR than IR groups ($72 \pm 3\%$ vs. $61 \pm 4\%$ at 12 months, P=0.02) while freedom from MALE (P=0.89) and AFS (P=0.17) was not significantly different. In multivariate analysis, IR was an independent predictor of wound healing

Conclusion

- The recent meta-analysis suggest that direct revascularization of the foot angiosome affected may improve wound healing and limb salvage rates compared with indirect revascularization.
- Based on our analysis for angiosome concept, indirect EVT is an acceptable strategy for most patients with CLI due to isolated BTK lesion, however, when wounds are complicated by both diabetes and infection, an effort should be made to accomplish direct EVT.