Role of MDCT for CTO-PCI

Keiichi Igarashi

JCHO (Japan Comity Healthcare Organization) Hokkaido Hospital

CTO PCI in Gaia era

CTO PCI in Gaia era

Points :

Don't rotate the wire too much !

 Understand exactly the vessel shape and the distribution of calcium in occluded site.

Utilize information from coronary CT

Vessel shape in CTO site

Vessel shape in CTO site 3D-MAP

Small Channels

or Intravascular channel?

Entry point of CTO

Entry point of CTO

Entry point of CTO

scular Center

Entry point of CTO

IVUS marking

HL CTO

Which projection angle should we use for CTO wiring?

6

Projection for wiring derived by CT

3D MAP technique for occlusion vessel

The occluded site cannot be filled with contrast media during CCTA. Calcification and vessel shape can be visualized without contrast media. Is non-contrast cardiac CT enough for CTO PCI of the

patient with renal dysfunction ?

RCA CTO case with renal failure

- Female in her 60's
- Renal failure Cre 1.81mg/dl eGFR 22.9 ml/min/1.73cm²
- Antegrade failure case in another hospital

non contrast CT with 3D-MAP

Ő

JCHO Hokkaido Hospital , Cardiovascular Center

Distribution of calcium

Microscopic CT images of CTO

Gregg W. Stone, David E. Kandzari, Roxana M, et al : Percutaneous recanalization of chronically occluded coronary arteries : A consensus document : Part 1 , Circulation. 2005; 112: 2364-2372

RCA CTO Distribution of calcium

MIP

RCA CTO Distribution of calcium

Curved MPR

Cross sectional view

non contrast CT

We try to visualize the collateral channel for retrograde approach by CCTA in advance of PCI procedure.

In coronary angiography, collateral channels may be missed due to overlap by other vessels.

Appropriate projection angle for tracking

RCA CTO case 3rd septal channel is good candidate for retrograde approach.

Inappropriate collateral channel LAD CTO case

Long CTO ?

Collateral from separate conus branch missed by CAG

Collateral channel grade (CC grade) in CAG

- CC 0 : no continuous connection between donor and recipient vessel
- CC 1 : continuous thread-like connection
- CC 2 : continuous, small sidebranch-like connection

Sudhir Rathore, Osamu Katoh, et al. Circ Cardiovasc Intervent. 2009;2:124-132

CC 0

CC 1

<u>Collateral channel grade (CC grade) in CT</u>

CT-CC 0 : no continuous connection between donor and recipient vesselCT-CC 1 : continuous thread-like connectionCT-CC 2 : continuous, small sidebranch-like connection

CAG vs CT in visualization of collateral channel (CC)

		All collateral channel (n=55)	CT-CC 0 (n=28)	CT-CC 1 (n=6)	CT-CC 2 (n=21)
CC grade (CAG)					
	0	15	14	0	1
	1	28	13	5	10
	2	12	1	1	10

Detection rate of CT-CC is 65.0 % if CAG is considered as gold standard.

(CT-CC 1+2 / CAG-CC 1+2 = 26 / 40)

Collateral visualized by CT is easy for crossing

by wire and micro catheter

	All collateral channel (n=55)	CT-CC 0 (n=28)	CT-CC 1 and 2 (n=27)	p value	
Wire					
cross	33	13	20	0.0264	
no cross	22	15	7	0.0364	
Micro catheter					
cross	30	11	19	0.0200	
no cross	25	17	8	0.0206	
Collateral complication					
minor perforation	4	3	1	NS	
major perforation	1	0	1	NS	
S AV fistula	1	1 CHO Hokkaida	0 Hospital Card	NS Iovascular Cen	

er

Summary

- 3D-MAP is useful to know vessel shape of CTO lesion correctly.
- CCTA can provide us with appropriate projection angle using 3D information of CT.
- Non-contrast CT may be enough to evaluate the calcification and vessel shape for CTO lesion in patients with renal dysfunction.
- CT angiography can reveal the useful collateral channel for retrograde approach.

