

How Will Treatment Paradigms Change in a Drug-eluting World?

Massimiliano Fusaro, MD

German Heart Center, Munich - Germany

Conflicts of interest

Speaker's name: Massimiliano Fusaro

I have the following potential conflicts of interest to report:

- ☐ Research contracts
- ☐ Consulting
- ☐ Employment in industry
- ☐ Stockholder of a healthcare company
- ☐ Owner of a healthcare company
- ☐ Other(s)

X I do not have any potential conflict of interest

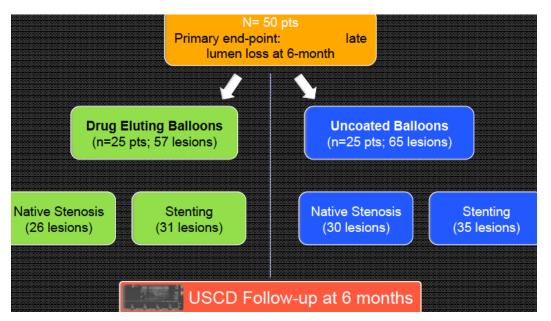
Treatment paradigms may change only through high-quality scientific evidence

Randomized Trials for Endovascular Treatment of Infrainguinal Arterial Disease: Systematic Review and Meta-analysis (Part 2: Below the Knee)

First author	Comparison	Patients, N	% FII/FIII/ FIV or IC/CU	Lesions, N	Age (y), mean (SD) or median (range)	Males, N (%)	Smoking, N (%)	Diabetes, N (%)	Renal failure, N (%)	CAD, N (%)	Stroke, N (%)	Hyperlipidemia, N (%)	Hypertension, N (%)	Occlusions, N (%)	Stenosis in %, mean (SD)	Lesion length (mm), mean (SD)	Primary outcome	Industry sponsored
DES vs PTA		2000												THE STATE OF		OCCUPANT O	(a) (b)	8
Scheinert 2012 15	Siral-ES	200	FII-FIV	228	73 (9)	143 (72)	65 (33)	129 (65)	- 50	90 (45)		146 (73)	181 (91)	179 (79)	-	27 (21)	12 mo binary restenosis	Yes
Tepe 2010 ¹⁴	Sirol-ES abdximab vs POBA abdximab	28	0/0/100	28	71 (—)	16 (57)	4 (14)	21 (75)	220	20	120	12 (43)	22 (79)	8 (29)	90 ()	29 (21)	6 mo primary restenosis	Not reported
DEB vs PTA																		
Fanelli 2012	PTXEB		FII-FIV	30				000000000000000000000000000000000000000	-	-	-	-		12 (40)	86 (5)	escension between		No
Liistro 2013 ¹⁷	PTXEB	132 (143 limbs)	FIII-FIV	158	75 (10)	106 (80)	20 (15)	132 (100)	-	22 (17)	12 (9)	39 (30)	98 (74)	126 (80)	97 (8)	130 (81)	12 mo binary restenosis	No
DES vs BS		and the same of											AND DESCRIPTION OF THE PERSON					2017
Rastan 2011 ¹³ / 2012 ¹⁸	Siroi-ES vs BMS	161	53/47	161	73 (9)	107 (66)	46 (29)	87 (54)	57 (35)	=	87	123 (76)	145 (90)	36 (22)	88 (9)	31 (9)	1 y primary patency rate	Yes
Falkowski 2009 ²⁰	Siral-ES vs BMS	50	68/20/12	50	mean 69 (53-S8)	29 (58)	22 (44)	20 (40)	227	21 (42)	7 (14)	18 (36)	31 (62)	32	22	18 (3)	6 mo restenosis	Not reported
Tepe 2010 ¹⁴	Sirol-ES abdximab vs BMS abdximab	30	0/0/100	30	73 (—)	16 (53)	2 (7)	15 (50)	-	-	8-5	9 (30)	21 (70)	10 (33)	89 (—)	31 (21)	6 mo primary restenosis	Not reported
Bosiers 2012 ²¹	Everol-ES vs BMS	140	0/45/55	154	76 (8)	89 (64)	45 (32)	77 (55)	44 (31)	-	72	53 (38)	96 (69)	25 (14)	-	17 (10)	1 y primary patency	Yes

Overall, completed randomized trials of drug-based technologies for BTK-revascularization have enrolled <1000 patients and have predominantly mechanistic primary endpoints

- Drug-coated balloons
- Drug-eluting stents
- Next future



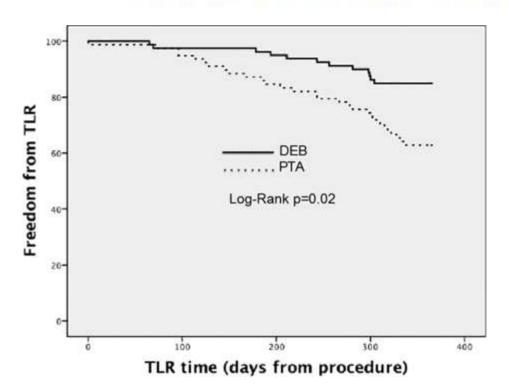
- Drug-coated balloons
- Drug-eluting stents
- Next future

DEBELLUM

Drug Eluting Balloon Evaluation for Lower Limb mUltilevel treatMent

Overall Lesions	122
Femoro-Popliteal Lesions	92 (76%)
BTK Lesions	30 (24%)
Mean lesion Length (cm)	7.5 ± 3.5
Lesion 7-15 cm	63 (51%)
Lesion < 7 cm	38 (27%)
Lesion > 15 cm	21 (22%)
200 200 200 200 200 200 200 200 200 200	
% Stenosis Diameter	85 ± 6.4
Total Occlusion	26 (22%)

Late Lumen Loss at 6-month


Overall analysis: 0.5±1.4 mm (DEB) vs 1.6±1.7 mm (PTA) *p*<0.01

The rate of TLR at 6 months is 9/25 (36%) in the PTA group, 2/25 (8%) in the DEB group (*P*<0.001)

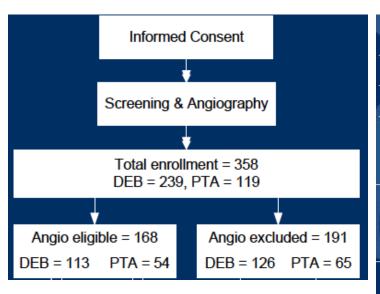
Drug-Eluting Balloon in Peripheral Intervention for Below the Knee Angioplasty Evaluation (DEBATE-BTK)

A Randomized Trial in Diabetic Patients With Critical Limb Ischemia

"Patients (n= 132) were enrolled in the study only after successful wiring of the target vessel and therefore the rate of major amputation observed cannot be compared with that derived from studies designed on an intention-to-treat basis"

Table 3. Clinical and Angiographic Outcome at 12 Months

19	DEB	PTA	<i>P</i> Value
Death, n (%)	5 (7.7)	3 (4.5)	0.4
Major amputation, n (%)	0 (0.0)	1 (1.5)	0.9
GVA, II (%)	2 (3.1)	3 (4.3)	0.9
AMI, n (%)	3 (4.6)	3 (4.5)	0.9
MAEs, n (%)	20 (31)	34 (51)	0.05
Limbs available for 12-mo follow-up, n	66	67	
ABI	0.78±0.22	0.47±0.28	< 0.001
Mean Rutherford class category, n (%)	0.90±1.8	2.0±2.3	0.004
0–3	57 (86.3)	44 (65.7)	0.06
4	0 (0)	2 (3)	
5	8 (12.2)	19 (28.3)	
6	1 (1.5)	2 (3)	
Complete index ulcer healing, n (%)*	56/65 (86)	43/64 (67)	0.01
Time to index ulcer healing, mo*	4.4±1.5	5.2±1.6	0.01
Lesions available for 12-mo follow-up	74	74	
Binary restenosis (>50%), n (%)†	20 (27.0)	55 (74.3)	< 0.001
Vessel occlusion, n (%)†	13 (17.6)	41 (55.4)	< 0.001
Occlusion length, mm†	87±88	128±75	< 0.001


Values are mean±SD when appropriate. ABI indicates ankle-brachial index; AMI, acute myocardial infarction, CVA, cerebrovascular accident; DEB, drug-eluting balloon; MAE, major adverse event; and PTA, percutaneous transluminal angioplasty.

IN.PACT DEEP

Randomized Trial of IN.PACT Amphirion DEB vs. PTA for Infrapopliteal Revascularization in Critical Limb Ischemia

Objective: Evaluate the safety and efficacy of IN.PACT Amphirion DEB vs. standard PTA for infrapopliteal revascularization in patients with CLI

	Primary Effi	сасу	DEB	PTA	p
	12-month LLL (mi	m) [1] 0.6	1 ± 0.78	0.62 ± 0.78	0.950
A	12-month CD-T	LR [2] 9.2%	(18/196)	13.1% (14/107)	0.291
	Primary Safety	DEB	PTA	р	
	6-month Death, Major Amputation or CD TLR	17.7% (41/232)	15.8% (18/114)	0.021 (non-infe 0.662 (super	

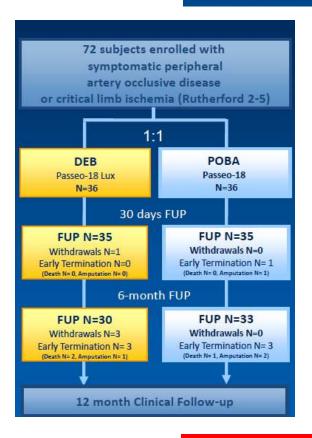
- 1. Angio Cohort, Corelab adjudicated. Angiogaphic Imaging 12-month FU compliance = 70.9% (DEB) vs. 71.4% (PTA)
- Clinically driven TLR of the target lesion in the (major) amputation free surviving subjects at 12 months. "Clinically driven TLR" defined as any TLR of the target lesion associated with: a) deterioration of RC and / or b) Increase in size of preexisting wounds and / or c) occurrence of a new wound(s), with b) and c) adjudicated by the Wound Healing Core lab

Study Outcome	litt.	Multivariate		
Primary Safety	RR 1.12 → PTA p = 0.662	HR 1.15 → PTA p = 0.617		
Death (all cause)	RR 1.25 → PTA p = 0.551	HR 1.28 → PTA p = 0.539		
Death or Major Amputation	RR 1.40 → PTA p = 0.064	HR 1.81 → PTA p = 0.073		
Major Amputation	RR 2.44 → PTA p = 0.080	HR 2.36 → PTA p = 0.119		

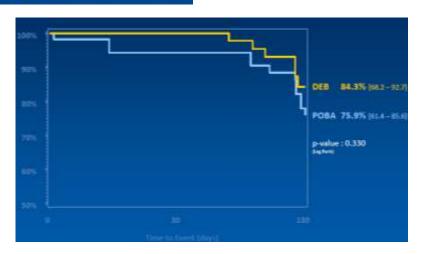
Randomization status forced into stepwise regression model Values in orange are safety trends (0.05 RR – relative risk, HR – hazard ratio

IN.PACT DEEP did not meet either 1° efficacy endpoint

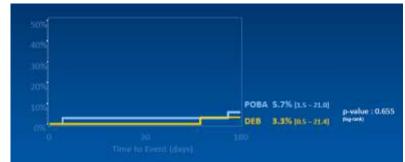
- PTA outcomes were significantly better than expected


IN.PACT DEEP Trial met the non-inferiority primary safety endpoint

 The safety signal towards major amputations, in conjunction with the absence of significant efficacy, led to market withdrawal



BIOLUX P-II


A randomized clinical trial of DEB vs. PTA for infrapopliteal disease

Probability of TLR (%)

Probability of major amputation (%)

At 6 months angiographic follow-up, Passeo-18 Lux DRB demonstrated a target lesion primary patency of 84.3% vs. 75.9% compared to the control PTA balloon (p=0.330).

At 6 months, 59% of patients improved in Rutherford Classification in the DEB group vs. 47% in the control group. No patients worsened in the DEB group, vs. 6% in the POBA group.

- Drug-coated balloons
- Drug-eluting stents
- Next future

Drug-Eluting Stents for Revascularization of Infrapopliteal Arteries

Updated Meta-Analysis of Randomized Trials

Trial/First Author (Ref. #)	No. of Patients	Age, yrs	Males, %	Diabetes, %	CLI, %	Occlusion %	Lesion length, mm	Vessel Diameter, mm	DAPT, mo	Longest FU, months
ACHILLES (7)	200	73.4	71	65	N/A	78.3	26.9	2.60	6	12
BELOW (25)	60	72.4	64	68	100	32.6	27.0	2,90	2	36
DESTINY (8)	140	75.5	64	55	100	16.0	15.9	3.00	12	12
Falkowski et al. (24)	50	69.4	58	66	32	N/A	17.8	2.69	6	6
YUKON-BTK (6)	161	72.9	67	54	47	22.4	30.0	3.00	6	50

611 patients from 5 trials randomly assigned to DESs (n= 294) versus control therapy (plain balloon angioplasty/BMS implantation, n= 307)

Median lesion length was 26.8 mm with a RVD of 2.86 mm

Median follow-up 12 months

A Target lesion revascularization

	DES	3	Contr	rol		Odds Ratio	Odds Rat	io
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random,	95% CI
ACHILLES	8	80	14	85	27.6%	0.56 [0.22, 1.43]		
BELOW	1	10	6	28	5.6%	0.41 [0.04, 3.88]	+	
DESTINY	7	74	22	66	27.4%	0.21 [0.08, 0.53]		
Falkowski et al.	3	25	14	25	13.0%	0.11 [0.03, 0.45]	-	
YUKON-BTK	7	82	15	79	26.3%	0.40 [0.15, 1.04]	•	
Total (95% CI)		271		283	100.0%	0.31 [0.18, 0.54]	•	
Total events	26		71					
Heterogeneity: Tau ² =	0.06; Chi ²	= 4.69	df = 4 (F	= 0.32	2); 12 = 159	6	1000 05 1	! ! !!
Test for overall effect:	Z = 4.19 (P < 0.0	001)		secumpet to the sec	**	0.1 0.2 0.5 1 Favors DES Fav	2 5 10 ors control

ARR 15.5% NNT 7

B Restenosis

	DES	3	Contr	rol		Odds Ratio	Odds F	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Rando	m, 95% CI
ACHILLES	15	67	31	74	27.1%	0.40 [0.19, 0.84]		
BELOW	2	10	19	28	8.2%	0.12 [0.02, 0.68]	-	
DESTINY	17	75	36	73	28.2%	0.30 [0.15, 0.61]		
Falkowski et al.	4	25	19	25	11.6%	0.06 [0.01, 0.25]	←	
YUKON-BTK	12	62	28	63	24.8%	0.30 [0.13, 0.67]	8	
Total (95% CI)		239		263	100.0%	0.25 [0.15, 0.43]	•	
Total events	50		133			1 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HC 01 95	
Heterogeneity: Tau ² =	0.14; Chi ²	= 6.48	df = 4 (F	P = 0.17); 2 = 38%	0	0.100	+ + +
Test for overall effect:	Z = 5.02 (P < 0.0	0001)			2	0.1 0.2 0.5 1 Favors DES	2 5 10 Favors control

ARR 29.6% NNT 4

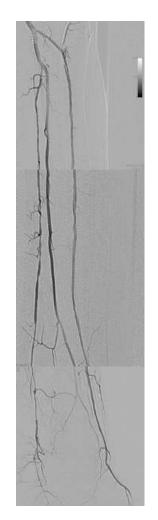
C Amputation

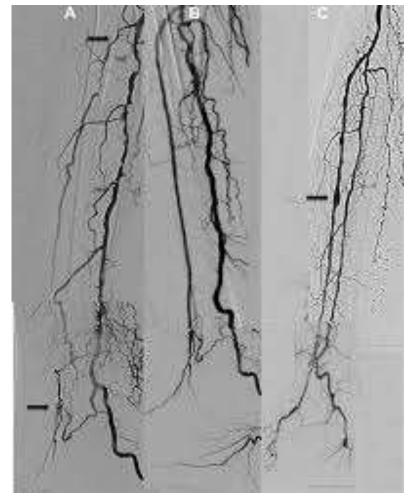
	DES	3	Contr	ol		Odds Ratio	Odds	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Rand	om, 95% CI
ACHILLES	11	80	17	85	61.7%	0.64 [0.28, 1.46]	-	
BELOW	2	10	8	28	13.8%	0.63 [0.11, 3.61]	-	
DESTINY	1	74	2	66	7.2%	0.44 [0.04, 4.95]	•	
YUKON-BTK	2	82	9	79	17.3%	0.19 [0.04, 0.93]	•	
Total (95% CI)		246		258	100.0%	0.50 [0.26, 0.97]	•	
Total events	16		36					
Heterogeneity: Tau2 =	0.00; Chi ²	= 1.82	df = 3 (F	= 0.61); I2 = 0%		1000	1 1 10
Test for overall effect:	Z = 2.06 (P = 0.0	4)	7	0.1 0.2 0.5 1 Favors DES	2 5 10 Favors control		

ARR 7.5% NNT 13

D Death

	DES	3	Contr	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
ACHILLES	10	99	12	101	29.0%	0.83 [0.34, 2.03]	
BELOW	1	10	15	28	6.9%	0.10 [0.01, 0.87]	
DESTINY	13	74	10	66	28.6%	1.19 [0.48, 2.94]	
Falkowski et al.	0	25	0	25		Not estimable	
YUKON-BTK	17	82	18	79	35.6%	0.89 [0.42, 1.88]	· · · · · · · · · · · · · · · · · · ·
Total (95% CI)		290		299	100.0%	0.81 [0.45, 1.49]	-
Total events	41		55			65	20 10 10 10 10 10
Heterogeneity: Tau ² =	0.12; Chi ²	= 4.41	df = 3 (F	= 0.22	2); 12 = 329	6	· · · · · · · · · · · · · · · · · · ·
Test for overall effect:				9000	(\$54) SIDER	0.	1 0.2 0.5 1 2 5 10 Favors DES Favors control


E Rutherford class improvement

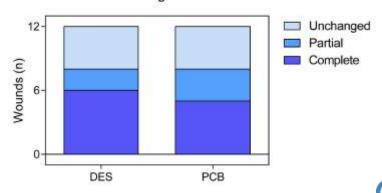

DES		Contr	rol		Odds Ratio	Odd	s Ratio
Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Ran	dom, 95% CI
54	71	51	76	29.3%	1.56 [0.75, 3.22]	-	-
41	74	38	66	34.0%	0.92 [0.47, 1.79]	-	
37	82	25	79	36.7%	1.78 [0.93, 3.38]		_
	227		221	100.0%	1.36 [0.91, 2.04]		•
132		114			1		
0.01; Chi ²	= 2.14	, df = 2 (F	P = 0.34	1); 12 = 6%	N.	0102 05	1 2 5 10
Z = 1.50 (P = 0.1	3)			7		
	54 41 37 132 0.01; Chi ²	54 71 41 74 37 82 227 132 0.01; Chi ² = 2.14	Events Total Events 54 71 51 41 74 38 37 82 25 227 132 114	Events Total Events Total 54 71 51 76 41 74 38 66 37 82 25 79 227 221 132 114 0.01; Chi² = 2.14, df = 2 (P = 0.34)	Events Total Events Total Weight 54 71 51 76 29.3% 41 74 38 66 34.0% 37 82 25 79 36.7% 227 221 100.0% 132 114 0.01; Chi² = 2.14, df = 2 (P = 0.34); l² = 6%	Events Total Events Total Weight M-H, Random, 95% CI 54 71 51 76 29.3% 1.56 [0.75, 3.22] 41 74 38 66 34.0% 0.92 [0.47, 1.79] 37 82 25 79 36.7% 1.78 [0.93, 3.38] 227 221 100.0% 1.36 [0.91, 2.04] 132 114 114 0.01; Chi² = 2.14, df = 2 (P = 0.34); l² = 6%	Events Total Events Total Weight M-H, Random, 95% CI M-H, Ran 54 71 51 76 29.3% 1.56 [0.75, 3.22] 41 74 38 66 34.0% 0.92 [0.47, 1.79] 37 82 25 79 36.7% 1.78 [0.93, 3.38] 227 221 100.0% 1.36 [0.91, 2.04] 132 114 0.01; Chi² = 2.14, df = 2 (P = 0.34); l² = 6%

"On adjusted indirect comparison, the everolimus- versus sirolimus-eluting stents, as well as the polymer-free versus durable-polymer DESs did not affect the risk estimates for the main outcomes"

What's about coronary-DES in the daily BTK-practice?

- Drug-coated balloons
- Drug-eluting stents
- Next future

- Do not translate interventional concepts from coronary into BTK-vascular field
- Relevant clinically-driven and patientoriented rather than marketing-pushed endpoints
- Comparisons between different devices to rule-out a supposed "class effect" in terms of benefit or harm


The IDEAS study PCB vs. DES for the long infrapopliteal lesions

	Group DES	Group PCB	р
# patients	25	25	
Men/Total	20/25	18/25	0.25
Age	75.27	67.58	0.03
Diabetes	19/25 (76%)	16/25 (64%)	0.17
C.K.D.	11/25 (44%)	8/25 (32%)	0.19

	DES	PCB	р
Binary Restenosis (>50%)	7/25	11/19	0.0457
Vessel Occlusion	5/25	3/19	1.00
Positive Remodeling	0/25	3/19	0.07
Immediate Residual Stenosis (%)	9.6±2.2	24.8±3.5	<0.0001

Wound healing at 6 months

Conclusions

Drug-based technologies represent a revolution in the field of revascularization of **peripheral artery disease involving BTK-segments**

The **safety and the biological efficacy** of new technologies are prerequisite to further investigate their clinical superiority in comparison with established treatment options

Small-population trials should test how to plan subsequent trials with strong clinical endpoints beyond amputation, quality of life and wound healing

Small single-center trials should not influence standard practice

19th CARDIOVASCULAR SUMMIT

Thank You

Massimiliano Fusaro, MD German Heart Center, Munich – Germany

fusaro@dhm.mhn.de