Invasive Evaluation of the Patient with Chest Pain and Non-Obstructive CAD (NOCAD)

William F. Fearon, MD

Professor of Medicine

Director, Interventional Cardiology

Stanford University

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

Company

- St. Jude Medical, Medtronic
- Medtronic, HeartFlow

Why is the Evaluation of NOCAD Important?

- ~20% of patients with chest pain are found to have NOCAD
- Up to 30% of patients continue to have angina despite successful coronary revascularization
- Microvascular dysfunction predicts adverse outcomes in a variety of clinical settings

Importance of the Microcirculation

189 women with chest pain and NOCAD: % free of Death, MI, CVA, or CHF

Pepine, et al. J Am Coll Cardiol 2010;55:2825-32.

Determinants of Myocardial Flow

- Epicardial Coronary Flow
 - Functional Impairments Ach Testing
 - Endothelial dysfunction (Variant Angina, CAD)
 - Structural Impairments FFR
 - Obstructive coronary stenosis (CAD)
- Microvascular Flow
 - Functional Impairments Ach Testing
 - Endothelial dysfunction (DM, dyslipidemia)
 - - Atherosclerosis, fibrosis, decreased vessel density (MI)

Determinants of Myocardial Flow

Endothelial (Dys)Function

Adapted from J Nuc Cardiol 2010;17:545-54.

Endothelial Dysfunction:

After Acetylcholine

After Nitroglycerin

What is the Microvasculature?

The coronary angiogram detects only 5% of the total coronary tree

Courtesy of Bernard De Bruyne, MD, PhD

What is the Microvasculature?

Two Compartment Model

What is the Microvasculature?

Three Compartment Model

Myogenic Control

Adapted from: Lanza and Crea. Circulation 2010;121:2317-2325.

Shear Stress

Coronary Artery Resistance:

There is little if any resistance in the normal epicardial artery; most of the resistance occurs in the microvasculature, at the level of the prearteriole and arteriole

De Bruyne, et al. Circulation 2001;104:401 Kaul, et al. Eur Heart J 2006;27:2272-74.

What is Microvascular Dysfunction?

 Coronary microvascular dysfunction (CMD) is defined as abnormal coronary microvascular resistance (either arteriolar or pre-arteriolar)

What is Microvascular Dysfunction?

 Coronary microvascular dysfunction (CMD) is defined as abnormal coronary microvascular resistance (either arteriolar or pre-arteriolar) that is clinically evident as an inappropriate coronary blood flow response, impaired myocardial perfusion and/or myocardial ischemia

What is Microvascular Dysfunction?

Coronary microvascular dysfunction (CMD) is defined as abnormal coronary microvascular resistance (either arteriolar or pre-arteriolar) that is clinically evident as an inappropriate coronary blood flow response, impaired myocardial perfusion and/or myocardial ischemia that cannot be accounted for by abnormalities in the epicardial coronary arteries.

Microvascular Dysfunction:

Classification

- Without myocardial/coronary disease
- With associated myocardial disease
- With associated epicardial disease

Iatrogenic

Camici and Crea. New Engl J Med 2007;356:830-840.

- Extremely challenging diagnosis
 - Heterogeneous patient population
 - Variety of pathogenetic mechanisms
 - Poor anatomic resolution
 - Potentially patchy nature of the disease

Diagnostic Challenge

Lanza and Crea. Circulation 2010;121:2317-2325.

Diagnostic Challenge

Lanza and Crea. Circulation 2010;121:2317-2325.

- Extremely challenging diagnosis
 - Heterogeneous patient population
 - Variety of pathogenetic mechanisms
 - Poor anatomic resolution
 - Potentially patchy nature of the disease
- Therefore, assessment of the microvasculature is primarily physiologic and not anatomic

Evaluating the Microcirculation... ...in the Cath Lab

TIMI Myocardial Perfusion Grade:

Evaluating the Microcirculation... ...in the Cath Lab

TIMI Myocardial Perfusion Grade:

Easy to obtain Specific for microvasculature Predictive of outcomes in large AMI studies

Drawbacks:

Qualitative Interobserver variability Not as useful in smaller studies or stable patients

Doppler Wire Coronary Flow Reserve

BASELINE	li e la serie de la serie s
APV:16	
DSVR:2.7	
PEAK	SDSDS SDSDS
APV:45	60 60 60 60 60 60 60 60 60 60 60 60 60 6
DSVR:2.3	
CFR:2.9	
THR:36 P#:4	0 BASE 09:35:32 PEAK 09:36:07

Pijls NHJ and De Bruyne B, Coronary Pressure Kluwer Academic Publishers, 2000

Index of Microcirculatory Resistance

Index of Microcirculatory Resistance

Potential Advantages:

- Readily available in the cath lab
- Specific for the microvasculature
- Quantitative and reproducible
- Predictive of outcomes

Estimation of Coronary Flow

De Bruyne, et al. Circulation 2002;104:2003

Derivation of IMR:

- Resistance = Δ Pressure / Flow
- 1 / $T_{mn} \cong$ Flow Δ Pressure = $P_d P_v$

•
$$IMR = P_d / (1 / T_{mn})$$

$$IMR = P_d X T_{mn}$$

at maximal hyperemia...

IMR Case Example

Cardiac transplant recipient enrolled in study evaluating ACE inhibition

IMR Case Example

Cardiac transplant recipient enrolled in study evaluating ACE inhibition

Accessing IMR

Flushing the System

Resting T_{mn} Measurements

Hyperemic T_{mn} Measurements

Practical Measurement of IMR

Animal Validation of IMR

Effect of Pacing on FFR/CFR/IMR

	Baseline	RV Pacing at 110 bpm
CFR	3.1±1.1	2.3±1.2†
IMR, U	21.8±6.5	22.9±6.9
FFR	0.88±0.07	0.87±0.07

Effect of Blood Pressure on FFR/CFR/IMR

	Baseline	Nitroprusside
CFR	2.9±0.9	2.5±1.2
IMR, U	23.85±6.1	24.00±7.9
FFR	0.88 ± 0.04	0.87±0.05

Change in LV Contractility and FFR/CFR/IMR

	Baseline	Dobutamine
CFR	3.0±1.0	1.7±0.6†
IMR, U	22.2±6.0	23.6±8.2
FFR	0.88±0.06	0.87 ± 0.06

Ng, et al. Circulation 2006;113:2054-61.

Mean correlation coefficients of IMR, CFR and FFR values comparing baseline measurement with each hemodynamic intervention

Ng, et al. Circulation 2006;113:2054-61.

Coefficient of variation between pairs of baseline values of IMR and CFR

Ng, et al. Circulation 2006;113:2054-61.

Correlation between IMR and cardiac MR assessment of microvascular obstruction in 108 patients after STEMI

Repeated IMR measurements obtained by 4 different operators in 12 STEMI patients were highly correlated (*r*=0.99, *P*<0.001), with a mean difference between IMR measurements of 0.01 (mean standard error 1.59 [95% CI –3.52 to 3.54], *P*=0.48).

Sex Differences and CFR

FFR, IMR and CFR measured in 157 patients (40 men) with NOCAD

- IMR was similar between the sexes (20.7±9.8 vs. 19.1±8.0, p=0.45), but CFR was lower in women (3.8±1.6 vs. 4.8±1.9, p=0.004).
- This was primarily due to a shorter resting T_{mn} in women (p=0.005).
- Hyperemic T_{mn} was identical (p=0.79).
- On multivariate analysis, female sex was an independent predictor of lower CFR and shorter resting T_{mn}, but not a predictor of IMR or hyperemic T_{mn}.

Sex Differences and CFR

FFR, IMR and CFR measured in 157 patients (40 men) with NOCAD

T_{mn}: an inverse correlate to absolute coronary flow

₩ ₩ ₩

Kobayashi, et al. J Am Coll Cardiol Interv 2015;8:1433-51.

Sex Differences and CFR

FFR, IMR and CFR measured in 157 patients (40 men) with NOCAD

CFR

IMR

Kobayashi, et al. J Am Coll Cardiol Interv 2015;8:1433-51.

"Resting Flow" and CFR

Doppler wire-derived CFR measured in 30 patients

Adjedj, et al. J Am Coll Cardiol Interv 2015;8:1422-30.

IMR: Normal Value

An IMR < 25 is considered normal

- The mean IMR measured in 15 subjects (22 arteries) without any evidence of atherosclerosis and no/minimal risk factors was 19±5.
- The mean IMR measured in 18 subjects with normal stress tests and normal coronary angiography was 18.9±5.6.
- The mean IMR in 20 subjects with no CAD or risk factors was 14.0 with all values <23.</p>

₩ ₽

Melikian, et al. Eurointervention 2010;5:939-945. Luo, et al. Circ Cardiovasc Interv 2014;7:43-48. Solberg, et al. Eurointervention 2014;9:1069-75.

Evaluation of NOCAD:

<u>Case Example</u>

- 72 year old retired naval officer
- HTN and dyslipidemia
- PCI of proximal LAD in 2006
- Some relief of angina
- Recent worsening angina
- Multiple stress tests (mild apical ischemia) and coronary angiograms

Myocardial Bridge

IVUS of LAD

Case Summary:

- No significant endothelial dysfunction/spasm
- Moderate restenosis of the LAD stent with mild diffuse epicardial atherosclerosis, which is not functionally significant
- Short mild bridging which is not significant
- Evidence for microvascular dysfunction
- Moderate OM disease which is not functionally significant
- Treatment plan: Augment medical therapy (statin, ACE I, carvedilol, nitroglycerin PRN)

- 139 patients referred for coronary angiography because of symptoms and/or abnormal stress test and found to have NOCAD
- FFR, IMR, CFR, IVUS and acetylcholine challenge were performed down the LAD

Patient Characteristic	n=139
Age (years)	54 ±11
Female	77%
Hypertension	53%
Diabetes	23%
Dyslipidemia	63%
Tobacco Use	8%

Lee BK, et al. Circulation 2015;131:1054-60.

- The mean IMR was 19.6 ±9.1
- Microvascular dysfunction was present in 21% (defined as IMR ≥ 25)
- Patients with microvascular dysfunction were older and more often hypertensive and diabetic

77% of patients had at least one occult coronary circulatory abnormality

Lee BK, et al. Circulation 2015;131:1054-60.

Conclusion:

- The evaluation of the patient with chest pain and no obstructive coronary artery disease (NOCAD) can be performed safely and relatively easily on a routine basis.
- The information provided will help diagnose the etiology of the patient's chest pain and may help to guide therapy.

