BRS in Left Main PCI *Clinical Data and Experience*

Duk-Woo Park, MD, PhD Heart Institute, University of Ulsan College of Medicine, Asan Medical, Seoul, Korea

Evolution of DES Technology

ABSORB ABSORB 1-Year Meta-analysis ABSORB II, ABSORB III, ABSORB Japan, ABSORB China DoCE (TLF): Cardiac Death, MI or ID-TLR (pooled)

TCTAP2016

Lancet 2016;387:1277-89.

ABSORB 1-Year Meta-analysis ABSORB II, ABSORB III, ABSORB Japan, ABSORB China Device Thrombosis (Def/Prob) (pooled)

ABSORB

Lancet 2016;387:1277-89.

Study-level Meta-Analysis of 6 RCT ABSORB Series and EVERBIO II and TROFI II

A Target lesion revascularisation

	BVS		EES		Weight	Fixed-effects odds ratio	
-	Events	Total	Events	Total	(%)	(95% CI)	
ABSORB China	7	238	7	237	13 ·2	1.00 (0.34-2.88)	· · · · · · · · · · · · · · · · · · ·
ABSORB II	4	335	3	166	5.9	0.64(0.13-3.12)	
ABSORB III	42	1313	19	677	51.6	1.14 (0.67-1.95)	
ABSORB Japan	7	265	5	133	10.1	0.68 (0.20-2.31)	
EVERBIO II	8	78	11	80	16.3	0.72 (0.28-1.87)	
TROFI II	2	95	1	96	2.9	1.98 (0.20-19.29)	· · · · · · · · · · · · · · · · · · ·
Overall	70	2324	46	1389	100	0.97(0.66-1.43)	•

Heterogeneity: χ^2 =1·69, df=5; p=0·89; l^2 =0% Test for overall effect: Z=0·16; p=0·87 Random-effects odds ratio 0·97 (95% Cl 0·66-1·43)

B Definite or probable stent thrombosis

TCTAP2016

BVS		EES		Weight	Fixed-effects odds ratio				
Events	Total	Events	Total	(%)	(95% CI)				<i>.</i>
1	238	0	232	3.1	7.21 (0.14-363.23)		22		
3	335	0	166	8.2	4.49 (0.04-49.92)		<u> </u>		
20	1301	5	675	69.1	1.89 (0.82-4.34)				
4	262	2	133	16.5	1.02 (0.18-5.58)	3 			
0	78	0	80		Not estimable				
1	95	0	96	3.1	7.47 (0.15-376.35)	X.			
29	2309	7	1382	100	1.99(1.00-3.98)				
² =1·90, d	f=4; p=0·75	; <mark>/</mark> 2=0%						10	
Test for overall effect: Z=1·96; p=0·05						0.1	1	10	100
Random-effects odds ratio 1.99 (95% Cl 1.00–3.98)						BVS better		EES better	
	BVS Events 1 3 20 4 0 1 29 2 2 9 2 2 9 2 2 9 , d ffect: Z=1 5 odds rat	BVS Events Total 1 238 3 335 20 1301 4 262 0 78 1 95 29 2309 2^2 =1·90, df=4; p=0·75 ffect: Z=1·96; p=0·05 s odds ratio 1·99 (95)	BVS EES Events Total Events 1 238 0 3 335 0 20 1301 5 4 262 2 0 78 0 1 95 0 29 2309 7	BVS EES Events Total Events Total 1 238 0 232 3 335 0 166 20 1301 5 675 4 262 2 133 0 78 0 80 1 95 0 96 29 2309 7 1382	BVSEESWeight (%)123802323.1333501668.2201301567569.14262213316.507808011950963.129230971382100	BVS EventsEES EventsWeight TotalFixed-effects odds ratio (%)12380232 $3\cdot1$ $7\cdot21$ ($0\cdot14-363\cdot23$)33350166 $8\cdot2$ $4\cdot49$ ($0\cdot04-49\cdot92$)2013015 675 $69\cdot1$ $1\cdot89$ ($0\cdot82-4\cdot34$)42622133 $16\cdot5$ $1\cdot02$ ($0\cdot18-5\cdot58$)078080Not estimable195096 $3\cdot1$ $7\cdot47$ ($0\cdot15-376\cdot35$)29230971382100 $1\cdot99$ ($1\cdot00-3\cdot98$) x^2 =1·90, df=4; p=0·75; l^2 =0% ffect: Z=1·96; p=0·05 y y y	BVS EES Weight Fixed-effects odds ratio 1 238 0 232 $3\cdot1$ $7\cdot21(0\cdot14-363\cdot23)$ 3 335 0 166 $8\cdot2$ $4\cdot49(0\cdot04-49\cdot92)$ 20 1301 5 675 $69\cdot1$ $1\cdot89(0\cdot82-4\cdot34)$ 4 262 2 133 $16\cdot5$ $1\cdot02(0\cdot18-5\cdot58)$ 0 78 0 80 Not estimable 1 95 0 96 $3\cdot1$ $7\cdot47(0\cdot15-376\cdot35)$ 29 2309 7 1382 100 $1\cdot99(1\cdot00-3\cdot98)$ 0\cdot1	BVS EES Weight Fixed-effects odds ratio 1 238 0 232 3:1 7.21 (0:14-363·23) 3 335 0 166 8.2 4.49 (0:04-49·92) 20 1301 5 675 69.1 1.89 (0:82-4:34) 4 262 2 133 16.5 1.02 (0:18-5:58) 0 78 0 80 Not estimable 1 95 0 96 3.1 7.47 (0:15-376·35) 29 2309 7 1382 100 1.99 (1:00-3:98)	BVS EES Weight Fixed-effects odds ratio (%) 1 238 0 232 3:1 7:21 (0:14-363:23) 3 335 0 166 8:2 4:49 (0:04-49:92) 20 1301 5 675 69:1 1:89 (0:82-4:34) 4 262 2 133 16:5 1:02 (0:18-5:58) 0 78 0 80 Not estimable 1 95 0 96 3:1 7:47 (0:15-376:35) 29 2309 7 1382 100 1:99 (1:00-3:98)

BVS Registry

A Propensity-Matched Cohort (N=1,810) of the GHOST-EU and XIENCE V USA

	BVS (%)	EES (%)	HR (95% CI)	Р
Device-oriented composite outcome	5.8	7.6	0.75 (0.52 to 1.08)	0.12
CV death	0.7	1.9	0.36 (0.14 to 0.92)	0.025
MI	2.4	4.0	0.61 (0.36 to 1.05)	0.07
TLR	4.6	3.5	1.35 (0.84 to 2.17)	0.22
Definite or probable ST	1.8	1.1	1.62 (0.73 to 3.57)	0.23

J Am Coll Cardiol Intv 2016;9:440–9

General Concept for LM PCI

- Mostly high-risk PCI
- Large caliber; 4~6 mm diameter
- Frequent distal main involvement; stent cross-over or complex 2-stent techniques are commonly required

General Concept for BRS

- Over-dilation is not recommended.
- Concerns regarding a lower radial force.
- Risk of fracture or crackdown.
- Higher risk of side-branch jail

Two-stent techniques with BRS is not yet recommended.

More Complex PCI Steps for BRS

- Thicker and more fragile struts
- Greater attention to procedure
 - Strut fracture with overdilation
 - Early thrombosis with underexpansion
- More techniques necessary
 - Pre: more agressive plaque modification
 - Post: routine NC ballon
 - Routine Intravascular Imaging

Our BRS case for LM Intervention

- 40/Male, effort chest pain 6 months ago,
- Risk factors; HTN, hyperlipidemia, smoking,
- TMT; positive at stage II, ECG; normal, Echo; normal

Our BRS case for LM Intervention

IVUS LM Shaft-MLA = 3.3 mm^2 FFR = 0.64

Pre-dilation with balloon

IKAZUCHI 3.0 x 15 mm

BRS Implantation

ABSORB BVS 3.5 x 23 mm

HP dilation

Sapphire NC 3.5 x 15 mm NIMBUS NC 4.0 x 13 mm

Final Results

Final Results

Distal edge

Distal bifurcatio

LM shaft

Proximal edge

Data of LM PCI with BRS

Most LMCA lesions were excluded in BRS trials.
Just case reports or expert opinions are available.

Letter to the Editor

Bioresorbable vascular scaffolds for left main lesions; a novel strategy to overcome limitations

Tadashi Miyazaki ^{a,b,1}, Vasileios F. Panoulas ^{a,c,1}, Katsumasa Sato ^a, Toru Naganuma ^a, Azeem Latib ^a, Antonio Colombo ^{a,*}

^a Interventional Cardiology Unit, EMO-GVM Centro Cuore Columbus, Milan, Italy

^b Department of Cardiovascular Medicine, Juntendo University, Tokyo, Japan

^c Imperial College London, National Heart and Lung Institute, London, UK

Colombo et al. Int J Cardiol. 2014;175(1):e11-3.

BRS for LM PCI

- Panel 1,2; BVS can be performed
- Panel 3; BVS should be decided on a case-by-case basis
- Panel 4; BVS should be avoided (SB big, large plaque)

Colombo et al. Int J Cardiol. 2014;175(1):e11-3.

BRS in LM Intervention

- The thick struts, fragility, and limited distensibility make the use of BRS in LM lesions a challenging task.
- Simple cross-over with BRS is feasible in LM disease with intact or large side-branch ostium.
- Still, complex bifurcation stenting or FKB for LM intervention is not yet fully tested, and could be associated with risk of fractures or distortion.
- Newer generation BRS with thinner struts and more durable and less fragile platforms could be applicable for diverse LM intervention in the near future.

