Very Long-term (>10 Years) Follow-up After PCI and CABG: Observations from CREDO-Kyoto PCI/CABG Registry Cohort-1 and -2

Takeshi Kimura M.D.

Kyoto University Hospital

Very Long-term (>10 Years) Follow-up After PCI and CABG: Observations from CREDO-Kyoto PCI/CABG Registry Cohort-1 and -2

Takeshi Kimura M.D.

Nothing to disclose.

Meta-analysis of RCTs comparing PCI versus CABG in Multivessel CAD: BMS/DES Era

Mortality

Sipahi I, et al. JAMA Intern Med. 2014.

RCT and Registry in Comparing PCI versus CABG

•RCT is the gold standard to compare the clinical outcomes after PCI and CABG.

•However, external validity of the findings from RCTs might be severely hampered by their exclusion criteria and the variations in ethnic, demographic, and procedural characteristics in the real clinical practice.

•Registry would be complementary to RCT in comparing PCI and CABG in the real world clinical practice.

CREDO-KYOTO PCI / CABG Registry

(Coronary REvascularization Demonstrating Outcome Study in Kyoto)

Multicenter registry enrolling consecutive patients with first coronary revascularization

Cohort 1: 2000-2002 BMS Era (N=9877, 30 centers) Excluding patients presenting with acute myocardial infarction Isolated Coronary Revascularization 9393 patients PCI 6878 patients Stent Use 82% Isolated CABG 2515 patients IMA Use 94 %

Cohort 2: 2005-2007 G-1 DES Era (N=15939, 26 centers) Including presenting withacute myocardial infarction Isolated Coronary Revascularization 15331 patients PCI 13058 patients Stent Use 93% DES Use 53% Isolated CABG 2173 patients IMA Use 97 %

CREDO-Kyoto Registry Cohort-2

All-cause Death: 3VD Stratum

Fifteen Years Follow-up after CABG from the CASS Registry Internal Thoracic Artery Graft versus Saphenous Vein Grafts Only

Survival benefit of ITA grafts relative to SVG grafts become apparent beyond several years after CABG. Therefore, 5 years may be too short to demonstrate the true survival benefit of CABG over PCI. However, there is a paucity of data on very long-term follow-up beyond 5-year after PCI and CABG.

Cameron A, et al. NEJM 1996.

CREDO-Kyoto Cohort-1 Extended 10- to 14-Year FU

PCI versus CABG for MVD excluding LMCA disease

All cause death

Interval	0 day	30 days	1 year	3 years	5 years	7 years	10 years	12 years	14 years
PCI							$\langle \rangle$		
N of patients with at least 1 event		26	157	383	536	726	1019	1156	1189
N of patients at risk	3490	3455	3288	2952	2656	2324	1925	717	4
Cumulative incidence		0.8%	4.5%	11.2%	15.9%	22.1%	32.2%	38.7%	45.5%
CABG									
N of patients with at least 1 event		18	66	147	234	314	475	562	578
N of patients at risk	1662	1639	1578	1443	1271	1138	933	351	1
Cumulative incidence		1.1%	4.0%	9.0%	14.6%	20.2%	31.7%	39.9%	44.9%

CREDO-Kyoto Cohort-1 Extended 10- to 14-Year FU

PCI versus CABG for MVD excluding LMCA disease

Adjusted risk for death: Within 5-year and Beyond 5-Year

We did not see any late survival benefit of CABG over PCI with extended follow-up beyond 5-year. Therefore, selection of revascularization strategies based on the 5-year clinical trial results may be appropriate even considering the longer-term outcomes.

Pooled Analysis of CREDO-Kyoto Cohort-1 and -2

Mortality risk of PCI relative to CABG in TVD

Yamaji K, et al. Circulation. 2016.

Pooled Analysis of CREDO-Kyoto Cohort-1 and -2

Mortality risk of PCI relative to CABG in TVD According to Age Categories

The excess mortality risk of PCI relative to CABG was seen in patients aged >=74 years, while the risk was neutral in patients aged <74 years. Yamaji K, et al. Circulation. 2016.

Pooled Analysis of CREDO-Kyoto Cohort-1 and -2

		1					
100 (%)	Myocardial Infarction	100 ⁻ (%)	Heart Failure Hospitalization				
80	- PCI	80	– PCI				
	- CABG		_ CABG				
60	-	60					
	Log rank P<0.001		Log rank P<0.001				
40	Adjusted H.R. (95%C.I.):	40	Adjusted H.R. (95%C.I.):				
	2.19 (1.52-3.16)		1.82 (1.41-2.36)				
20	-	20					
0		0					
	0 5 10 15 Years		0 5 10 15 Years				
Years	0 5 10	Years	0 5 10				

Years	0	5	10		Years	0	5	10	
PCI	0 (0.0%)	197 (7.0%)	245 (11.3%)	N of events	DCI	0 (0.0%)	309 (10.9%)	398 (18.8%)	N of events
	3165	1808	638	N at risk	FCI	3165	1780	642	N at risk
CABG	0 (0.0%)	76 (3.3%)	98 (5.6%)	N of events	CABG	0 (0.0%)	154 (6.9%)	230 (14.5%)	N of events
	2486	1635	706	N at risk		2486	1587	676	N at risk
	2486	1635	706	N at risk		2486	1587	676	N at

Pooled Analysis of CREDO-Kyoto Cohort-1 and -2

N at risk

N at risk

		V							
100	-	Stroke	9		100		Coro Revascul	onary arizatio	n
80		PCI			80		PCI		
60		CABG			60		CABG		
00	Log	g rank P=0.0	06		00				
40	Ad	justed H.R. 5 (0 57-0 98	(95%C.I.):		40		Log rank	P<0.001	CIV
20		5 (0.57-0.90	·)		20		4.40 (3.67	7-5.26)	_
0	-				0	P			
	0	5 Yea	10 ars	15		0	5 Yea	10 ars	15
Years	0	5	10		Years	0	5	10	
PCI	0 (0.0%) 3165	223 (8.0%) 1811	280 (13.1%) 640	N of events N at risk	PCI	0 (0.0%) 3165	1541 (52.1%) 871	1641 (64.1%) 198	N of events N at risk
CABG	0 (0.0%)	201 (8.8%)	275 (15.8%)	N of events	CABG	0 (0.0%)	303 (13.2%)	363 (19.2%)	N of events

Changes in Coronary Revascularization Strategies

Exclusion of patients with acute myocardial infarction. Inclusion of patients from 26 centers that participated in both cohort-1 and -2.

CREDO-Kyoto Cohort 1: 2000-2002 BMS Era (N=8986)

CREDO-Kyoto Cohort 2: 2005-2007 G-1 DES Era (N=10339)

Changes in Clinical Outcomes

Repeated coronary revascularization

Changes in Clinical Outcomes

Myocardial infarction

Changes in Clinical Outcomes

All-cause death

Despite the larger proportion of patients treated with PCI in the cohort-2 than in the cohort-1, there was no increased 2-year mortality risk in the entire cohort of first coronary revascularization.

Very Long-term (>10 Years) Follow-up After PCI and CABG: Observations from CREDO-Kyoto PCI/CABG Registry Cohort-1 and -2

Summary

•During very long-term follow-up, CABG was associated with significantly lower mortality risk than PCI in the real clinical practice in Japan. However, the magnitude of survival benefit might be smaller than that reported in the meta-analysis of RCTs.

•We did not see any late survival benefit of CABG over PCI with extended follow-up beyond 5-year.

•The excess mortality risk of PCI relative to CABG was seen in patients aged >=74 years, while the risk was neutral in patients aged <74 years.

•PCI was associated with higher risk for myocardial infarction, heart failure hospitalization, and any coronary revascularization, but lower risk for stroke.

•Despite the larger proportion of patients treated with PCI in the cohort-2 than in the cohort-1, there was no increased 2-year mortality risk in the entire cohort of first coronary revascularization.