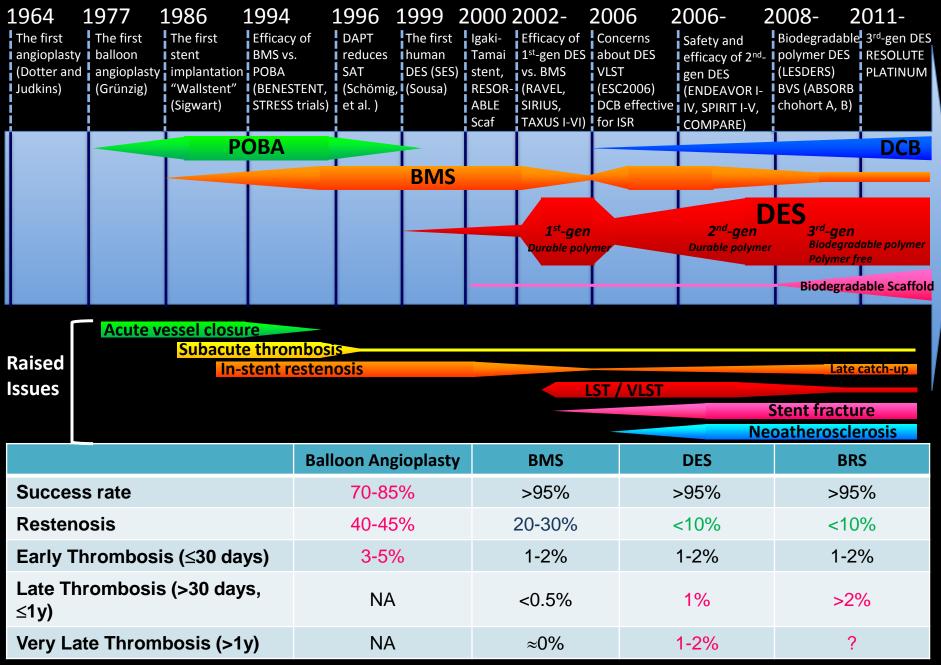
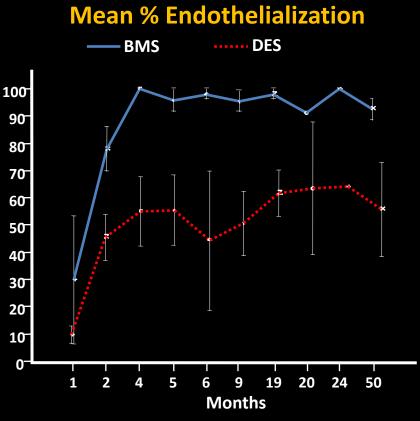
Is BRS Free From Stent Thrombosis? Lessons From Pathologic Findings


Aloke V. Finn, MD Medical Director CVPath Institute Associate Professor University of Maryland CVPath TCTAP April 28, 2016

Conflict of Interest Declaration

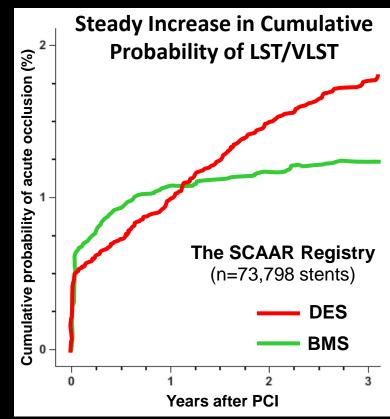
- Institution grant/research support
 - 480 Biomedical, Abbott Vascular, Atrium, BioSensors International, Biotronik, Boston Scientific, Cordis J&J, GSK, Kona, Medtronic, MicroPort Medical, CeloNova, OrbusNeich Medical, ReCore, SINO Medical Technology, Terumo Corporation, and W.L. Gore, Spectronics, CSI, Lutonix Bard, Surmodics, Microport, Meril Life Sciences.

History of Percutaneous Coronary Intervention


1st Generation DES: Expectation Versus Reality

- DES were created to prevent excessive neointimal thickening which was the primary cause of increase target lesion revascularization
 - milestone event in interventional cardiology

"... the sirolimus-eluting stent has achieved the delicate balance of preserved safety and improved efficacy..." NEJM October 2, 2003 Volume 349, p. 1315-1323.


"Use of the paclitaxel-eluting stent was safe, with no excess risks apparent..." NEJM January 15, 2004 Volume 350, p. 221-231.

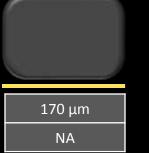
Endothelialization and Stent Thrombosis (LST/VLST) Following 1st-generation DES vs BMS

Joner M & Finn AV. J Am Coll Cardiol. 2006;48:193-202.

Lagerqvist, et al. Circ Cardiovasc Intervent 2009

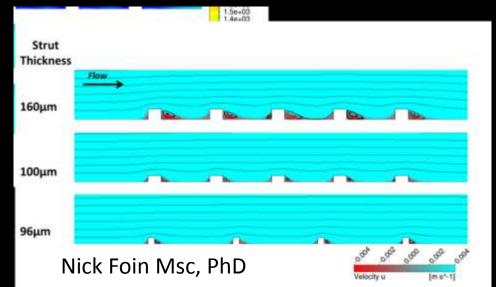
Annual Rate of LST/VLST

 0.4-0.6%/year up to 4 years (Bern/Rotterdam registries: SES and PES)
0.26%/year up to 5 years (j-Cypher: SES)

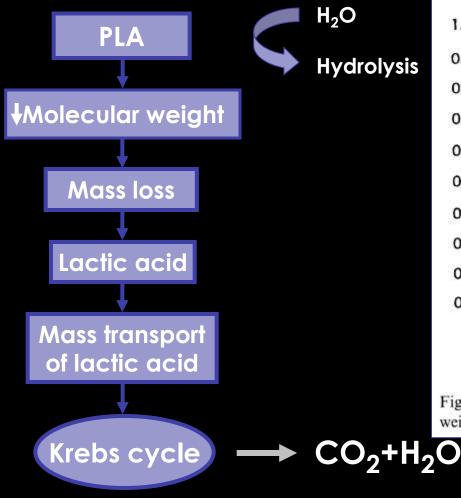

> Wenaweser P, et al. J Am Coll Cardiol 2008;52:1134-40. Kimura T, et al. Circulation 2012;125:584-591.

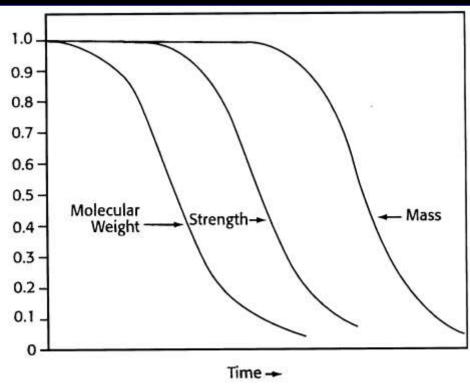
Evolution of DES Technology

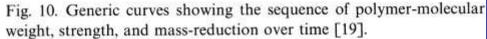
		First Gen			Second Gen			
Durable Polymer	Cypher	TAXUS Express	TAXUS Liberte		Resolute Integrity	Xience Xpedition	Promus PREMIER	
Stents								
Strut Thickness	140 μm	132 μm	96 µm		89 µm	81 µm	81 μm	
Coat Thickness	7µm / side	16µm/side	14µm/side		6μm / side	8µm / side	8μm / side	


Bioabsorbable Polymer Stents	Biomatrix	Nobori
Strut Thickness	120 μm	125 μm
Coat Thickness	10 µm	20 µm
Fully Bioresorbable Stents	BVS	ELIXIR DESolve
Strut Thickness	150 μm	150 μm
Coat Thickness	3 μm / side	<3 µm / side

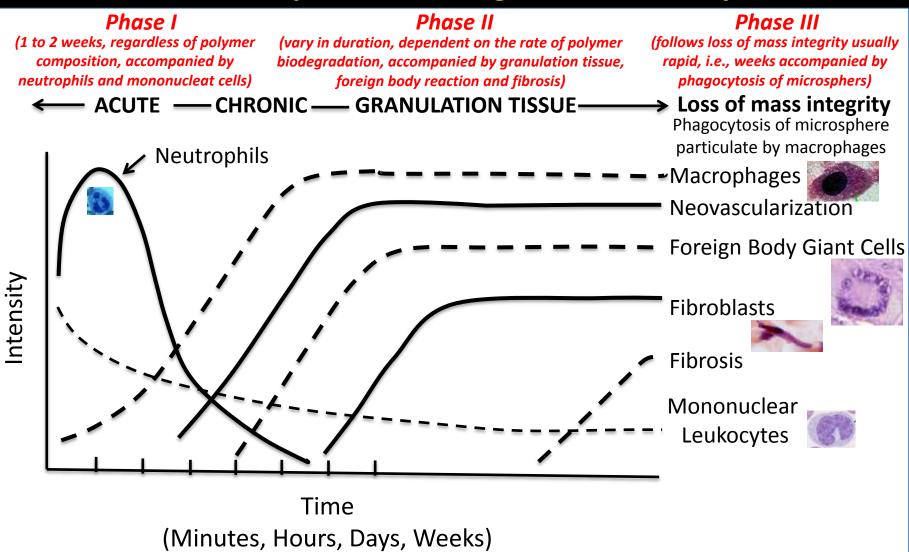
Where Are We with BRS?


- Mechanical properties of polymeric scaffolds are controlled by various parameters
- Currently larger strut width/thicknesses are required to achieve comparable mechanical properties to metallic platforms though next gen devices with 100uM thickness are in development
- When we evaluate BRS pathologically we need to keep in mind how these structural limitations affect vascular responses to BRS

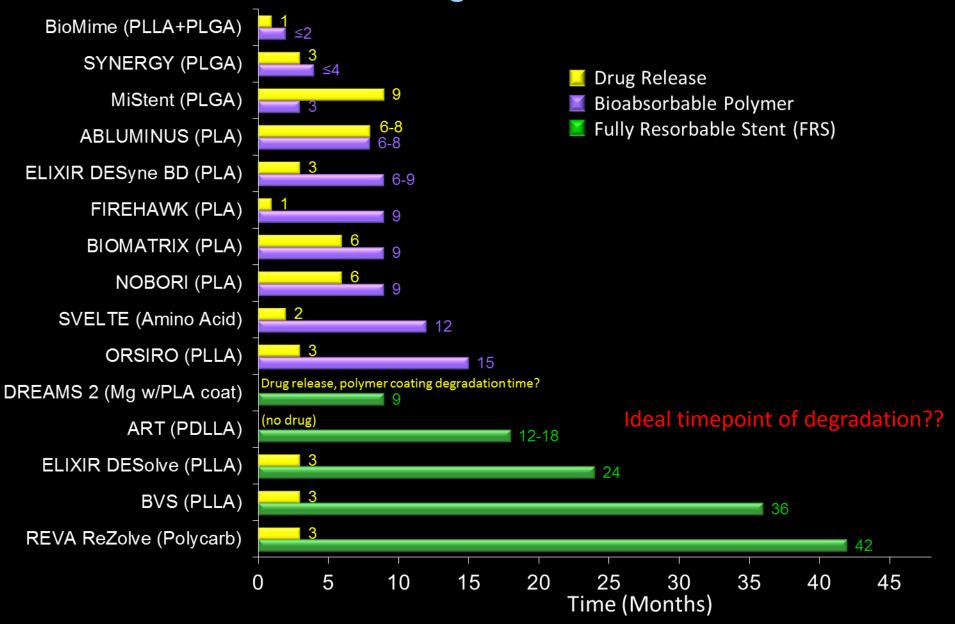



Contemporary DES Platforms Strut and Coating Thickness In Perspective

Durab		E	Bioabsorbable		
Polymer Coat		Polyr	Stent		
Xience CoCr-EES	Resolute	Biomatrix	Nobori	SYNERGY	BVS
Promus PtCr-EES	CoNi-ZES	316L-BES	316L-BES	PtCr-EES	PLLA-EES
		Stru	t Thickness		
81µm	89µm	120µm	125µm	74µm	150µm
		Polyr	ner Coating		
Conformable	Conformable	Abluminal	Abluminal	Abluminal	Conformable
7-8µm / side	6µm / side	11µm	20µm	4µm	3µm / side


PLA Metabolic Pathway

The temporal variation in the acute and chronic inflammatory responses, granulation tissue development, and foreign body reaction to implanted biodegradable microspheres

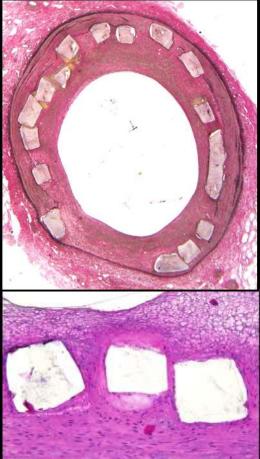

Anderson JM, Shive MS. Advanced Drug Delivery Reviews 1997;28:5-24.

Assessment for degradation of bioresorbable scaffolds (BRS)

- Histology (Immunohistochemical staining)
- Imaging study: Intravascular imaging (Optical coherence tomography; OCT), Computed Tomography (CT)
- Biochemical analysis
- Measurement time points may need to be modified to better capture critical safety parameters
 - ✓ Early time point: prior to degradation (when BRS is still intact, 4-5 time points within this period)
 - ✓ During degradation (yearly assessment)
 - ✓ Late time point: after complete resorption
- Emphasis on late time point
 - ✓ The last time point needs to establish that the vessel is healed and has reached a steady state.
 - ✓ This may not be until after degradation is complete.
 - Assess whether absence of rigid scaffold leads to adverse arterial remodeling & edge effects and for histology shrinkage is a problem especially once degradation begins
 - ✓ Evaluate potential toxicity of degradation products (seen as inflammation)

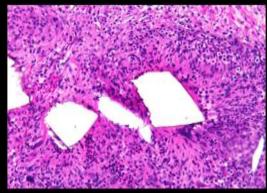
Ultimately, latest time point will also depend on evidence of acceptable healing and stability

Time Course For Polymer Bioabsorption Not all bioabsorbable technologies are the same

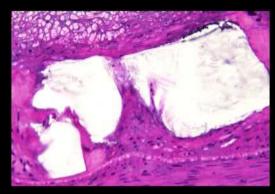


Inflammatory reaction following implantation of BRS B in porcine arteries

28 days

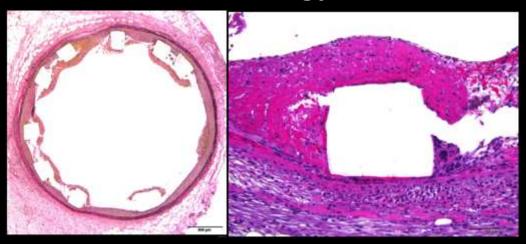


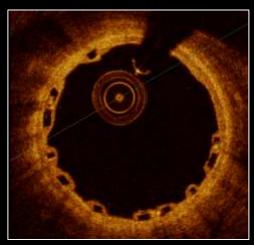
90 days



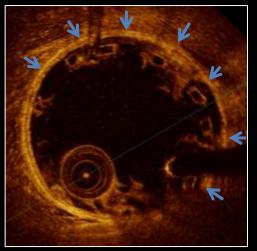
Discontinuities of bioresorbable scaffold strut

28 days

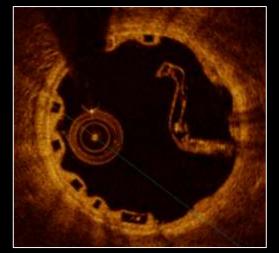

90 days

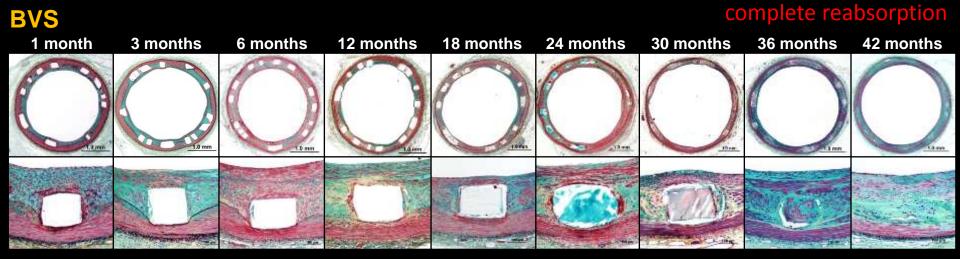


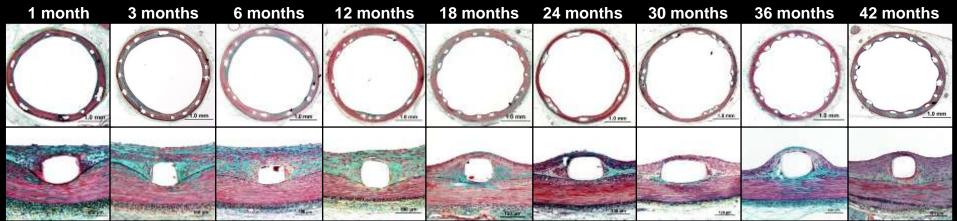
Pathological/OCT assessment following implantation of BRS D in healthy porcine arteries at 7 days


Histology

OCT

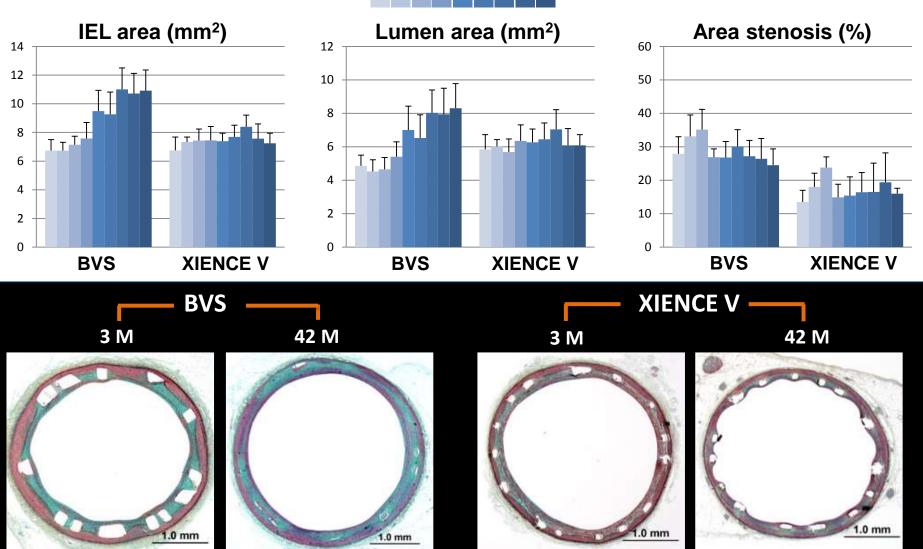



Scaffold Malapposition


Scaffold Fracture

BVS (Cohort B) vs. XIENCE V in Porcine Coronary Arteries from 1- to 42-months (Movat pentachrome) 36-42 months for

XIENCE V



Otsuka F, et al. Circ Cardiovasc Interv 2014;7:330-42

Morphometric Analysis of

BVS and XIENCE V in Porcine Coronary Model – Cohort B

1 3 6 12 18 24 30 36 42 months

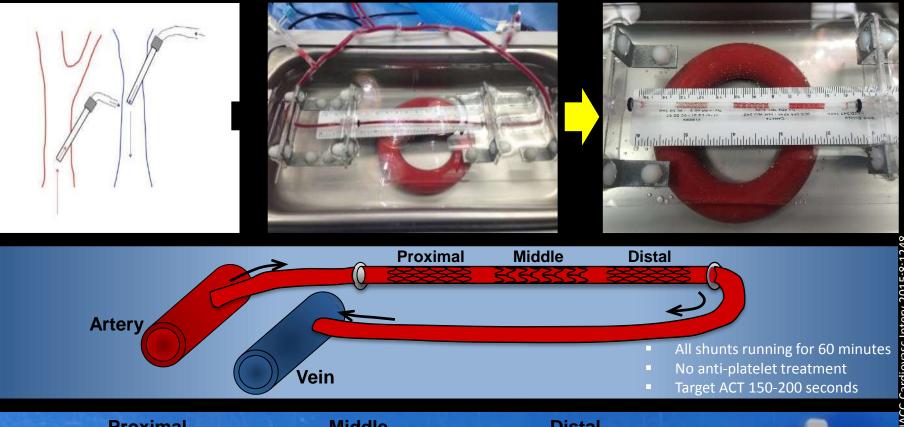
Otsuka F, et al. Circ Cardiovasc Interv 2014;7:330-42

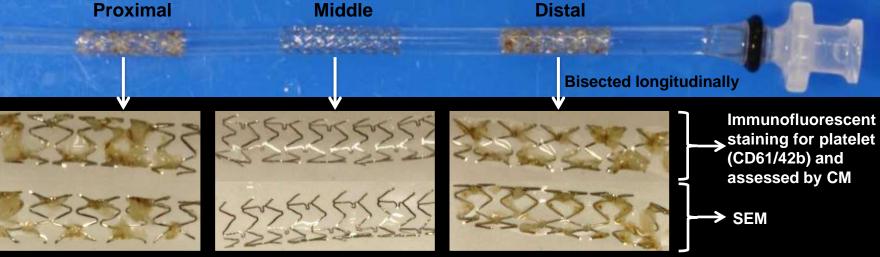
Impact of Strut Thickness on Healing Delayed strut coverage and healing with thicker struts

Uncovered struts predictive of late stent thrombosis

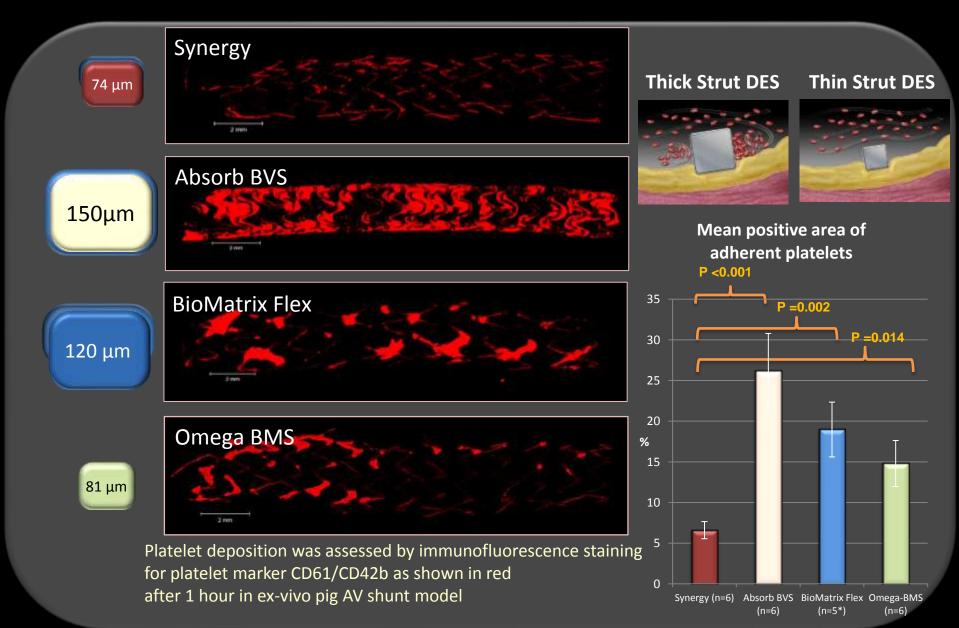
Finn A, Joner M et al, Circulation 2007;115:2435-2441

P=0.05 % *P*=0.001 100 94.8 80 88 77 60 40 20 0 Liberté Express Element 132 µm 97 µm 81 µm

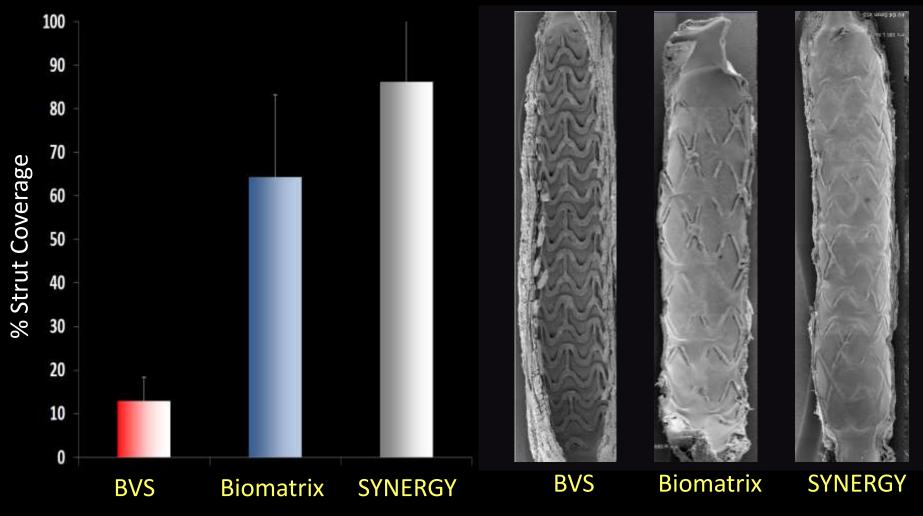

BMS Strut Coverage at 14 days in Rabbit


Soucy N, Feygin J et al, EuroIntervention. 2010 Nov;6(5):630-7

1. Porcine AV shunt: carotidjugular using customized sheath


2. Arterialized flow using Sylgard tube

3. Thrombus formation after 1 hour


Platelet deposition by confocal microscopy of immunofluorescent staining (CD61/CD42b)

Thick vs. Thin Strut DES

Healing and Endothelialization in SYNERGY, Biomatrix, and Absorb BVS

Endothelialization in Rabbit at 28 Days

Preliminary data presented by Renu Virmani, MD at TCT AP 2014

Device Thrombosis to 1 Year

	Absorb (N=1322)	Xience (N=686)	p-value
Device Thrombosis (def/prob)	1.54%	0.74%	0.13
- Early (0 to 30 days)	1.06%	0.73%	0.46
- Late (> 30 to 1 year)	0.46%	0.00%	0.10
- Definite* (1 year)	1.38%	0.74%	0.21
- Probable (1 year)	0.15%	0.00%	0.55

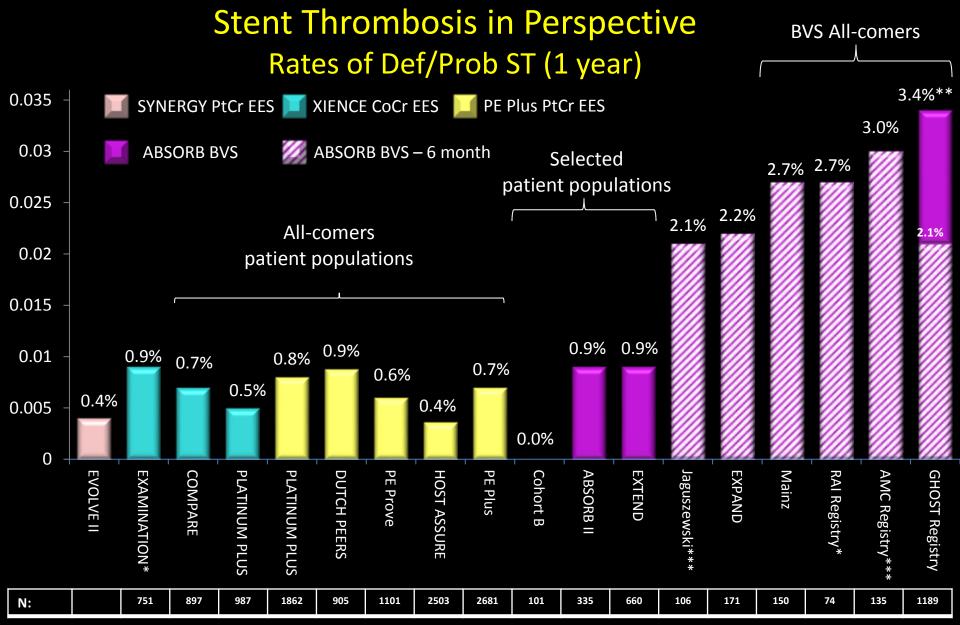
*One "definite ST" in the Absorb arm by ITT was in a pt that was treated with Xience

Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials

Lancet. 2016.

A Target lesion revascularisation

	BVS		EES		Weight	Fixed-effects odds ratio	
	Events	Total	Events	Total	(%)	(95% CI)	
ABSORB China	7	238	7	237	13.2	1.00 (0.34-2.88)	
ABSORB II	4	335	3	166	5.9	0.64(0.13-3.12)	
ABSORB III	42	1313	19	677	51.6	1.14 (0.67-1.95)	
ABSORB Japan	7	265	5	133	10.1	0.68 (0.20-2.31)	
EVERBIO II	8	78	11	80	16.3	0.72 (0.28-1.87)	
TROFIII	2	95	1	96	2.9	1.98 (0.20-19.29)	
Overall	70	2324	46	1389	100	0.97 (0.66-1.43)	.

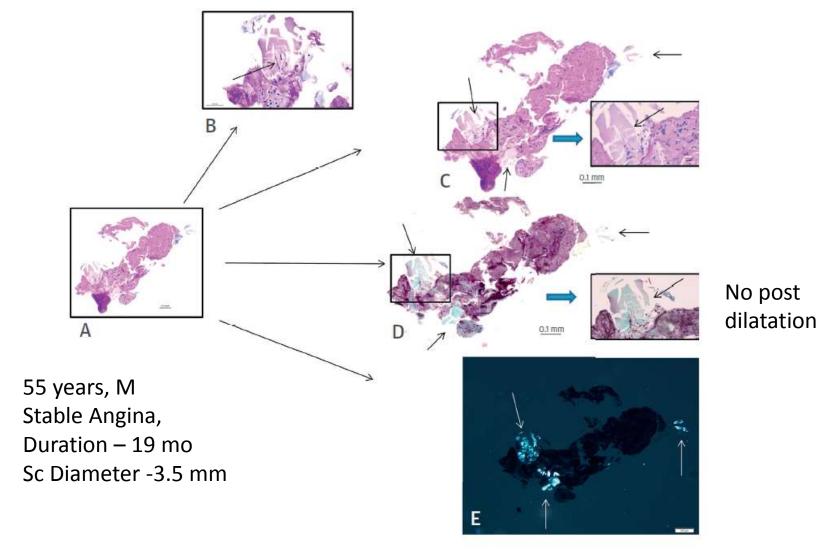

Heterogeneity: χ²=1·69, df=5; p=0·89; l²=0% Test for overall effect: Z=0·16; p=0·87 Random-effects odds ratio 0·97 (95% Cl 0·66–1·43)

B Definite or probable stent thrombosis

	BVS		EES		Weight	Fixed-effects odds ratio		
	Events	Total	Events	Total	(%)	(95% CI)		
ABSORB China	1	238	o	232	3.1	7.21 (0.14-363.23)		
ABSORB II	3	335	0	166	8.2	4.49 (0.04-49.92)		
ABSORB III	20	1301	5	675	69.1	1.89 (0.82-4.34)	_	
ABSORB Japan	4	262	2	133	16.5	1.02 (0.18-5.58)		
EVERBIO II	0	78	0	80		Not estimable		
TROFIII	1	95	0	96	3.1	7.47 (0.15-376.35)		• •
Overall	29	2309	7	1382	100	1.99 (1.00-3.98)	6	
Heterogeneity:)	2=1.90, dt	f=4; p=0.75	; 12=0%			0.01	0.1 1	10 100
Test for overall e	ffect: Z=1	96; p=0.05				0.01		
Random-effects	s odds rat	io 1.99 (95	% CI 1.00-	3-98)			BVS better	EES better

Figure 2: Risk estimates of primary outcomes for BVS versus EES

Forest plots show results for target lesion revascularisation (A) and definite or probable stent thrombosis (B). BVS=bioresorbable vascular scaffold. df=degrees of freedom. EES=everolimus-eluting stent.


*STEMI Population, **Annualized Rate, ***Def ST Only

EVOLEV II: Keriakes AHA 2014. EXAMINATION: Sabate, et al. Lancet 2012. COMPARE: Lancet 2010 Jan 16;375(9710):201-9., RESOLUTE All-Comers: Serruys et al N Engl J Med 2010; 363:136-146., TWENTE: Clemens von Birgelen at TCT 2011., DUTCH PEERS: Clemens von Birgelen at TCT 2013; PE Prove: Raul Moreno, MD PCR 2013. HOST Assure: Hyo-Soo Kim, MD, PhD ACC 2013; ABSORB Cohort B: Serruys, PW, ACC 2013; ABSORB EXTEND: Chevalier B., EuroPCR 2013; Jaguszewski, et al. Clin Res Cardiol 2014. BVS EXPAND: Robert-jan van Guens. EuroPCR 2014. Mainz: Presented by Gori at ESC 2014. RAI: lelasi, A. EuroPCR 2014. AMC Registry: Kraak, et al. Eurointervention2014. GHOST: Capodanno, et al. EuroIntervention 2014.; PLATINUM Plus, DUTCH PEERS, PE-PROVE and HOST ASSURE studied PROMUS Element stent (PtCr EES). Results from different studies are not directly comparable. Information provided for educational purposes only.

Case reports of late BRS failure

Very Late Scaffold Thrombosis (VLST)

	Author	Age	Sex	Treatment	Duration	Symptom		DAPT
1	Karanasos A, et al.	57	Male	Absorb	24 months	Unstable angina		were discontinued days prior to ST
2	Timmers L, et al.	39	Male	Absorb	18 months	Acute myocardial infarction		were discontinued nonths of implantation
3	Sato T, et al.	47	Male	Absorb	22 months	Atypical symptoms	Treated with antiplatelets and oral anticoagu due to atrial fibrillation Antiplatelet therapy discontinued after 6 months of implantation.	
4	Kesavamoorthy B, et al.	42	Male	Absorb (3.0x28 mm)	15 months	Acute coronary syndrome		were discontinued onths prior to ST
5	Raber L et al.	68	Male	Absorb (3.0x18 mm)	44 month	Stable Angina	Aspirin monotherapy	
6	Raber L et al.	53	Male	Absorb (3.0x18 mm)	19 months	Stable Angina	Aspirin monotherapy	
7	Raber L et al.	55	Male	Absorb (2.5x28 mm)	21 months	NSTE-ACS	Aspirin & Prasugrel	
8	Raber L et al.	55	Male	Absorb (3.5x12 mm)	19 month	Stable Angina	Aspirin & Prasugrel	
> M	alapposition	/ An	eurys	sm				
	Author		Age	Sex		Treatment	Duration Symptom	
1	Cortese B, et a	al.	54	Male		Absorb (2.5x18 mm)	11 months atypical effort angi	
2	Cortese B, et a	se B, et al.		Female		Absorb (3.5 x12 mm)	2 months	None (scheduled PCI)
3	Nakatani S, et	al.	83	Male		Absorb (3.0x18mm)	6 months	None (follow-up angiography)

When stained with hematoxylin and eosin, fibrin stains pink and platelets stain grayish at 10 and 20 magnification (A and C). Glycoproteins and proteoglycans within foreign material appear purple magenta with Periodic acid-Schiff stain at 20 magnification (B). Foreign material stains green when assessed in Movat pentachrome staining (D). Polarized light shows birefringence within foreign material at 10 magnification (E). Arrows point to foreign material within aspirated thrombus.

Bioresorbable Stents and Thrombosis

- Bioabsorable polymers definitely have an advantage over durable polymers –simply polymer disappears with time
- Animal studies with some biodegradable polymer stents have clearly shown larger lumens and less long term inflammation.
- Not all bioerodable polymers are created equal, it depends on the type and amount of polymer load, degradation rate in relation to drug release.
- But the limitations of polymers versus metal in terms of scaffolding are obvious and thus BRS have larger struts to accommodate for their relatively lower radial strength
- Fully absorbable polymeric scaffolds need to get thinner to really compete with DES
 - In multiple clinical trials and registries there is greater thrombosis and higher late loss

However, this does not mean we should not use them. Correct patient selection in those with large vessels who are able to take extended duration DAPT they may be a better option