Transcatheter management of ruptured sinus valsalva

Jou-Kou Wang, MD Department of Pediatrics, National Taiwan University Hospital TCTAP 2016

Ruptured SVA paediatric cardiology 3rd

Ruptured sinus valsalva aneurysm (I)

deficiency in normal elastic tissue & abnormal development of bulbus cordis (SVA)

Rupture of SVA leads to intracardiac shunting (mostly RV) occurring at 3rd & 4th decades

Ruptured sinus valsalva aneurysm (II)

more common in asian population, association with outlet type VSD male dominant, (3~4 : 1) right sinus valsalva (65-85%)

> Non coronary sinus valsalva (10-30%) left sinus (< 5 %)

- association with VSD & AR
- sudden onset of symptoms
- conventional treatment surgery

* Murashita et al. ATS 2002;73:1466-71 * Wang et al. ATS 2007;84:156-60

Origin & site of rupture

TABLE 1. Origin and site of rupture in RSVA

	Cl	Patients				
Origin	RV	RA	LA	LV	PA	(n)
Right coronary sinus	85*	36		1		122 (76.7)
Noncoronary sinus	4	31				35 (22.0)
Left coronary sinus			2		1†	2 (1.3)
Total	89 (56.0)	67 (42.1)	2 (1.3)	1 (0.6)	1†	159 (100)

Data in parentheses are percentages. *RSVA*, Ruptured sinus of Valsalva aneurysm; *RV*, right ventricle; *RA*, right atrium; *LA*, left atrium; *LV*, left ventricle; *PA*, pulmonary artery. *In 1 patient with bicuspid aortic valve, RSVA originated from anterior sinus; this patient was included in right coronary sinus group. †In 1 patient with RSVA originating from left coronary sinus, RSVA protruded into left atrium and pulmonary artery simultaneously.

FIGURE 1. Illustration of types I to IV ruptured sinus of Valsalva aneurysm (RVSA) in modified Sakakibara classification system.

Imaging studies for planning RSVA closure OCT/MRI

 Echocadiography :precordial, TEE,
 3-D TEE

TEE imaging

Ruptured SVA aortogram

損失壓縮 - 不用於診斷

Ruptured SVA aortogram

Catheter closure of ruptured SVA (I)

evaluation with Echo,CT & MRI

Angio to identify detailed anatomy & associated anomalies

TEE guidance

General anesthesia

Devices used in transcatheter closure of ruptured sinus valsalva aneurysm

Rashkind umbrella device
Coil (0.052, 0.038)
Amplatzer duct occluder
Amplatzer septal occluder
muscular VSD occluder
pm VSD Chinese device

Device size selection in closure of ruptured SVA

- Device:
 - * ADOI
 - * VSD muscular occluder
- Size
 - * ADOI 2-3 mm larger than narrowest dimension
 * VSD occluder 3-5 mm larger than narrowest dimension

Guan et al. J Invasive Cardiol 2013;25:492-6 Chang CC. Circulation J 2006

ADO closure ruptured SVA

損失壓縮 - 不用於診斷

損失壓縮 - 不用於診斷

RSVA to RVOT

Lossy compression - not intended for diagnosis

RSVA ADO deployment

Before detachment

RSVA to RV post ADO

Lossy compression - not intended for diagnosis

RSVA ADOI closure

Coronary ostium & device

3D RSVA

NTUH PED 2013/09/10[1:54:07AM

VR 33I bz 75180 12cm Full Volume 3D 45% 3D 42dB

Ω

3-D Ruptured SVA

Residual shunt

Lable 2

Baseline characteristics of patients in each type.

	Total group	Window-like	Aneurysmal	Tubular	Other rare conditions	
Patients (n)	30(100)	17(56.7)	5(16.7)	5(16.7)	3(10.0)	
Involved sinus of Valsalva	20 12	10° 10	10 A	38 B.	92 Ab	
RCS [n (%)]	19(63.3)	10(33.3)	3(10.0)	4(13.3)	2(6.7)	
NCS [n (%)]	11(36.7)	7(23.3)	2(6.7)	1(3.3)	1(3.3)	
Related cardiac chamber						
RA [n (%)]	16(53.3)	10(33.3)	2(6.7)	3(10.0)	1(3.3)	
RV [n (%)]	14(46.7)	7(23.3)	3(10.0)	2(6.7)	2(6.7)	
Associated VSD [n (%)]	6(20.0)	4(13.3)	0	0	2(6.7)	
Associated AR [n (%)]	3(10.0)	2(6.7)	0	0	1(3.3)	

Data are expressed as number (percentage). NCS, non coronary sinus; RA, right atrium; RCS, right coronary sinus; RV, right ventricle; AR, aortic regurgitation; VSD, ventricular septal defect.

Mild AR in 5 /17 widow type

S. Liu et al. / Journal of Cardiology 64 (2014) 139-144

Table 3 Interventional information and outcomes for different types.

Туре	Patients (n)	Defect size (mm)	Occluder size (mm)	Occluders used (n)			Complications [n (%)]			
			Small-waist double-disk	Muscular	Asymmetric	Occluders retrieval	Residual shunts	Occluder related AR		
Total	30	6	8	24	7	2	2(6.7)	5(16.7)	5(16.7)	
Window-like	17	4	8	17	0	2	0	3(10.0)	5(16.7)	
Aneurysmal	5	6	8	5	0	0	0	0	0	
Tubular	5	7.5	10	0	5	0	0	0	0	
Other rare conditions	3	6	11	2	2	0	2(6.7)	2(6.7)	0	

Data are expressed as number (percentage). AR, aortic regurgitation.

142

NTUH experience in RSVA transcatheter closure (I)

- 1. N = 14 (introgenic, after surgery n =3) F 7, M 7 age 38 ± 14
- 2. Qp/ Qs 2.1 ± 0.4
- 3. Pulse pressure 55 ± 15 mmHg

NTUH experience in RSVA transcatheter closure (II)

 Right sinus valsalva n =11, Non coronary sinus valsalva n = 3

2. Aortic opening 4-8 mm mean 6.2 ± 1.3 mm

3. Drainage RA n = 11, RV n = 3

4. ADO I n = 12 muscular VSD occluder n = 1 Vascular plug II n = 1

Results

Successful deployment in n =13 The remaining one had large residual, underwent second device one week later but he died of multi-organ failure 2. No one had residual shunt 3. No one had AR 4. Symptomatic improvement in all surviving patients.

conclusions

Transcatheter closure of RSVA is feasible in majorities of patients.
 ADOI is an ideal device.
 Echocardiographic monitoring is mandatory.

Long term follow-up is required.

Contents lists available at ScienceDirect

Journal of Cardiology

journal homepage: www.elsevier.com/locate/jjcc

Original article

Angiographic features of ruptured sinus of Valsalva aneurysm: New classification

Suxuan Liu (MD)^{a,1}, Xudong Xu (MD)^{a,1}, Feng Chen (MD)^a, Zhenzhen Zhao (MD)^b, Yigang Zhang (MD)^c, Cheng Wang (MD)^d, Jun Xiang (MD)^e, Guangwei Wu (MD)^f, Xiaoli Chen (MD)^g, Xianxian Zhao (MD)^{a,*}, Yongwen Qin (MD)^{a,*}

^a Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
^b Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China

Fig. 3. Drawing of the angiographic classification system and occluders used for ruptured sinus of Valsalva aneurysm in the study.

pVSD closure with ADO

5332982	A204	NTUH
郭冠廷 004Y M		Sensation 64
ACCES#@T010117307	74	1
2010/12/10	and the second second	SE:4
13:20:53	· AND STREET OF STREET	IM:47
CHD C+ 1.5 B25f 75	5%	Cont.APPLIED
	106	bpm, 75 %, 88 ms
R 7 5 -108.5 thk:1,5mm DEOV:154		kV:100 mA218
CT With Contract- CH		238msec
CHANGE CONTRAST. CH	A40	tuc norf

pVSD closure with ADO

Ruptured SVA ADO closure

RSVA or paravlvular leak after valve

