Best approach for BTK intervention?

Lawrence A. Garcia, MD *Chief, Section Interventional Cardiology and Vascular Interventions Director, Vascular Medicine St. Elizabeth's Medical Center Tufts University School of Medicine Boston, MA*

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

Company

- Grant/Research Support
- Consulting (non-compensated)
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

- Abbott, Covidien/Medtronic
- Covidien/Medtronic, Boston Scientific, Abbott
- Arsenal, Primacea, TissueGen, CV Ingenuity, Spirox, Scion Cardiovascular, Syntervention, Essential Medical
- None
- Innovation Vascular Partners, Consulting
- None
- None

Infra-popliteal revascularization

- Short vessel
 - popliteal
- Long vessels
 - tibials
- Generally angled proximally and distally
- Usually calcified
- Total occlusions
- Generally critical limb
 Outcomes based on AFS

Below the Knee

- Almost all studies deal with infra-popliteal revascularization are for CLI
 - PTA
 - BMS
 - Atherectomy
 - DCB
 - DES
- Data primarily driven with amputation free survival (AFS) as a metric
- Primary patency is harder to find though newer studies use this endpoint in addition to wound healing
- All studies remain incredibly heterogeneous so comparisons are impossible

Angioplasty

Simple

Fast

Lesion length

- Short
- Longer
- Distal
- Outcome driven
- AFS
- Wound healing

- Between 1999 and 2004
- 452 patients with critical limb ischemia were considered requiring immediate revascularization
- 228 for bypass and 224 for angioplasty
- Follow-up is at 3-7 years and outcome is amputation free survival and operative survival

No difference in outcome either in AFS or OS between surgery or PTA alone

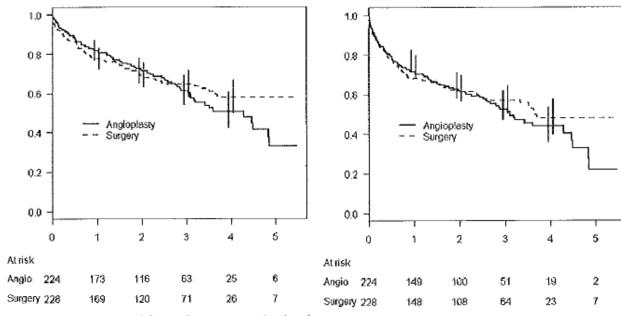
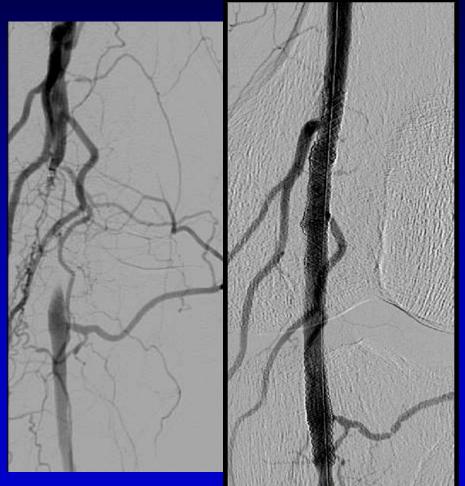



Figure 4 All-cause mortality following bypass surgery (BSX) and balloon angioplasty (BAP) by intention to treat (2005 analysis).

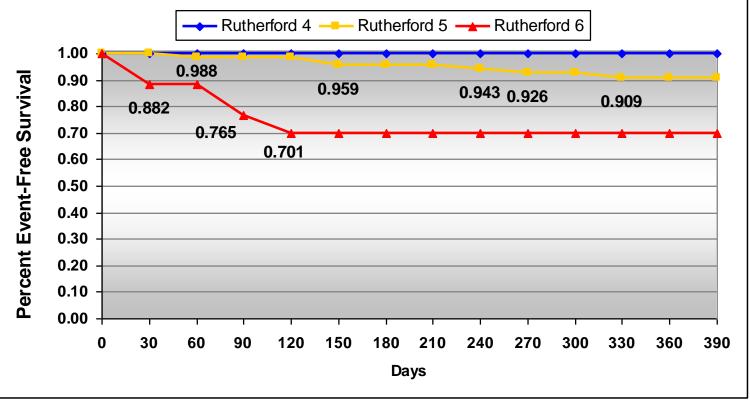
Figure 3 Amputation free survival following bypass surgery (BSX) and balloon angioplasty (BAP) by intention to treat (2005 analysis).

Stenting (BMS)

- Generally longer lesions
- Goal wound healing
- Patency less important long term

EXCELL: Core Lab Lesion Baseline Characteristics

Lesion Characteristics	N=140 Lesions/N=120 Patients
Lesion Length, cm	
Overall	4.7 ± 4.2
Stenosis <u><</u> 99% (95 lesions)	3.6 ± 3.5
Occlusions (42 lesions)	7.1 ± 4.5
Lesions / Patient	1.2 ± 0.4
RVD	2.8 ± 0.7
Pre – stenosis, % (in-lesion)	81.1 ± 16.5
Pre – MLD, mm (in-lesion)	0.5 ± 0.5
Post – stenosis, % (in-stent)	12.3 ± 13.2
Post – MLD, mm (in-stent)	2.4 ± 0.6


Values indicate mean ± SD of the lesion characteristic.

Freedom From TLR/Limb


Salvage

Kaplan-Meier 12 Month Freedom from Major Amputation

by Baseline Rutherford Criteria

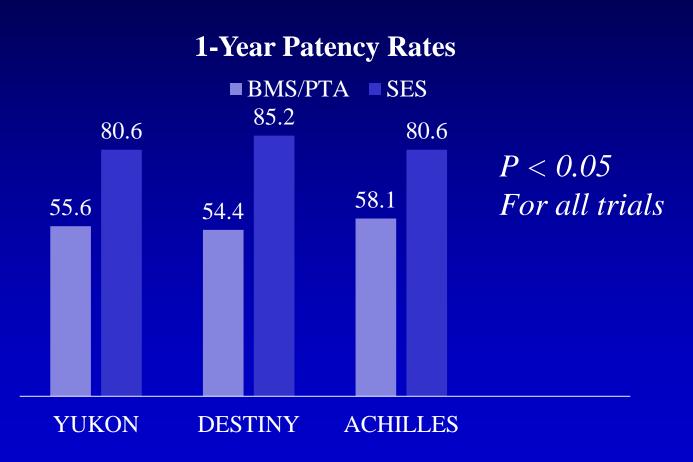
Stenting DES

- Short focal lesions by data set
- Goal wound healing
- Primary patency and long term patency very good

CURRENTLY PRESENTED OR PUBLISHED TRIALS ON DES IN BTK LESIONS

• YUKON-BTK—LL 27mm

•Sirolimus eluting polymer free vs. bare metal stent (Yukon),Translumina. PI: T. Zeller


•DESTINY—LL 15-19 mm

•Everolimus eluting stent (Xience V) vs. bare metal stent (Multilink vision), Abbott Vascular. PI: M. Bosiers

•ACHILLES

•Sirolimus stent with polymer coating (Cypher select) vs. POBA, Cordis. PI: D. Scheinert

YUKON, DESTINY & ACHILLES Trials (n=515) Primary Patency

Rastan et al. EHJ 2011 Scheinert et al. LINC 2011 Bosiers et al. JVS 2011

Debulking Therapies

- Laser
- Rotational devices
- Directional atherectomy

- All generally registries
- All have AFS primary outcomes
- To a lesser degree is primary patency

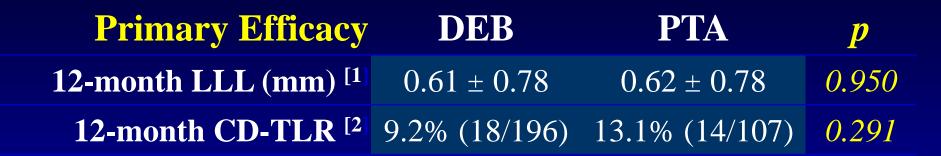
Atherectomy

- DA-DEFINITIVE LE
 - CLI cohort 71% overall (PSVR 2.4)
 - SFA 8.6 cm
 - Popliteal 5.4 cm
 - Tibial 6.0 cm
- CSI-LIBERTY 360
 - CLI RB 4/5 and separate RB 6
 - Core lab adjudication-angio/US
- Pathway-JETSTREAM
 - Ongoing registry (currently on hold) includes RB 4 only

The LACI Studies

The LACI Trial: 6 Month Results

- Laird et al
- 145 pt, 155 critical ischemic limbs
- 423 lesions
- 41%SFA, 15% Popliteal, 41% Infrapop
- 70% of Pts had combo occlusion and stenosis
- 29% Rutherford Class 4
- 71% Rutherford Class 5 or 6
- Limb salvage 92% at 6 months


Directional atherectomy

SilverHawk

Primary Patency in Subgroups

Subgroup	Claudican	ts (n=743)	CLI (n:	=279)	
	Patency (PSVR <u><</u> 2.4)	Lesion Length (cm)	Patency (PSVR <u><</u> 2.4)	Lesion Length (cm)	
All (n=1022)	78%	7.5	71%	7.2	
Lesion type					
Stenoses (n=806)	81%	6.7	73%	5.8	
Occlusions (n=211)	64%	11.1	66%	10.3	
Lesion Location					
SFA (n=671)	75%	8.1	68%	8.6	
Popliteal (n=162)	77%	6.0	68%	5.4	
Infrapopliteal (n=189)	90%	5.5	78%	6.0	

Primary IN.PACT DEEP Outcomes

Primary Safety	DEB	РТА	p
6-month Death Major Amputation or CD TLR	17.7% (41/232)	15.8% (18/114)	0.021 (non-inferiority) 0.662 (superiority)

1. Angio Cohort, Corelab adjudicated. Angiogaphic Imaging 12-month FU compliance = 70.9% (DEB) vs. 71.4% (PTA)

2. Clinically driven TLR of the target lesion in the (major) amputation free surviving subjects at 12 months. "Clinically driven TLR" defined as any TLR of the target lesion associated with: a) deterioration of RC and / or b) Increase in size of preexisting wounds and / or c) occurrence of a new wound(s), with b) and c) adjudicated by the Wound Healing Core lab

BioLux

- 104 (50 DCB, 54 POBA) subjects, RB 2-5
- Safety: 30 days
- Efficacy: 6-month primary patency
- 30-day event: 0% DCB vs 5.8% POBA
- 6-month efficacy: 84% DCB vs 76% POBA (P=0.3)

LEVANT BTK

- 455 patients in 55 global sites
- Safety endpoint
 - Amputation
 - Major reintervention
- Efficacy
 - Limb salvage
 - Primary patency 12 months
- Indication for BTK possible after this data set release

Why Bioabsorbable Stents?

- Advantages
 - No permanent device left behind, no need for stent scaffold later
 - Decrease flow-limiting dissection
 - May allow treatment of areas not suitable for a permanent stent
 - No long-term dual antiplatelet regimen needed
 - Maintain natural anatomic activity of vessel

- Disadvantages
 - Inflammation
 - Embolization of material
 - Unknown time of support need

Emerging Platforms PVD

				NOOTH BRITIS	
Device	РТА	BMS	DES	DEB	What's Next?
12-mo * patency	33%	80%	82%	LLL 0.4mm	Bioabsorbable Stent?
*results not comparable	VIVA opc	Resilient	Zilver PTX	Thunder #	

Dake M, et al. Circ Cardiovasc Interv. 2011;4:495-504. Table adapted from trials *, #

Technology Comparison

Device	Long- term DAPT	Remo		pansive modeling	Radial Strength	Distal Material Embolization
PTA balloon	No	No		Yes	No	No
DEB	No	No		Yes	No	Yes
Stent-Bare/DES	Yes	Yes		No	Yes	Yes
Bioabsorbable Stent	No	No		Yes	No	Yes

Avoidance of DAPT and addition of expansive remodeling AND maintenance of vasomotor tone are distinct advantages of bioabsorbable stents

Adapted from Euro Intervention. 2009;5 (Supplement F) F72-F79.

Bioresorbable Stents 2015

Company	Picture	Polymer/Drug	Features
Abbott (BVS)	26- 29- 29- 29- 36- 30- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	All biodegradable polymers (PLLA) with everolimus	Self-expanding and balloon-expandable designs
Igaki-Tamai	IGAKI-TAMAI "STENT	PLLA; Transilast	Zigzag design deployed with a heated balloon FIM Trial; 50 pts
Reva Medical		Poly (DTE carbonate) with Iodine for radiopacity	Design has ratchet links for deployment
Biosensors	Prototype 4.0 MM X 20 MM SELF-EXPANDING BIOGRADABLE EVEROLIMUS-ELUTING STENT	Poly (L or DL) lactide with BA9	Self-expanding stent with a retractable sheath delivery catheter

Bioresorbable Scaffolds: Clinical Trials

Device	Study	Lesions	n	Outcome
A	Igaki-Tamai FIM	coronary	50	18% restenosis @ 12-mos.
Igaki-Tamai	PERSEUS	SFA	45	50% restenosis @ 6-mos.
	PROGRESS AMS	coronary	63	48% restenosis @ 12-mos.
20	BIOSOLVE-1	coronary	47	4.7% TLR @ 12-mos.
	BEST BTK	infrapopliteal	20	73% primary patency @ 12-mos
AMS	AMS INSIGHT	infrapopliteal	117	68% restenosis @ 6-mos.
REVA	RESORB	coronary	30	67% TLR @ 6-mos.
2222	ABSORB Cohort A	coronary	30	12% restenosis @ 6-mos.
100	ABSORB	coropary	45	2.4% restenosis @ 6-mos.
Absorb	Cohort B	coronary	56	3.5% restenosis @ 12-mos.

ABSORB BTK

Up to 2 de novo lesions in separate tibial vessels,
length ≤24 mm, in patients with critical limb ischemia (CLI)90 Subjects
• 80 evaluable
• 10 roll-in• Prospective, single-arm, multicenter trial
• One target lesion treated with a single 3.0 x 28 mm Absorb B\/S90 Subjects
• 80 evaluable
• 10 roll-in
Sites in EU &

- One target lesion treated with a single 3.0 x 28 mm Absorb BVS
- Up to one non-target lesion treated with commercial device

	Baseline	1 <i>m</i> o	6то	12mo	2yr	3yr
Clinical, Duplex (all subjects)						
Angiography (all subjects)						
OCT Substudy (N ~ 10)						
MSCT/ MR Substudies (N ~ 5 each)						

New Zealand

Study Objective:	First-in-man study, safety and performance of the Absorb BVS in subjects with CLI from occlusive vascular disease of the tibial arteries
Primary Endpoint:	Freedom from major adverse limb events (major amputation or major reinterventions) occurring within one year or periprocedural (30-day) death (MALE+POD)
Secondary Endpoints:	Procedural, clinical, hemodynamic, angiographic, and functional endpoints in hospital & at each FU visit

What is the best approach?

- All interventions afford AFS
- BMS primary patency poor
- Focal DES excellent primary patency compared with BMS
- Non-stent technologies
 - Directional atherectomy (DEFINITIVE LE) reported outcomes for popliteal and infra-popliteal disease in both claudicants and/or CLI
 - Rotational devices (CSI) OASIS claudicant group—LIBERTY forthcoming
- DCB (IN-Pact DEEP)failed in largest trial for below knee use
 - Principal studies using DCB still may be appealing but given the data (?)
- BVS very early data set and currently not indicated though if proven may provide an excellent early and long term therapy for a difficult location
- Current review of data supports revascularization for infra-popliteal disease though choice is at discretion
- Combined therapies for longer lesions seem appealing though larger trials currently pending