Ultimaster-From the Pathological Point of View

Aloke V. Finn, MD Medical Director CVPath Institute Assoc. Professor University of Maryland TCTAP April 27, 2016

Conflict of Interest Declaration

- Institution grant/research support
 - 480 Biomedical, Abbott Vascular, Atrium, BioSensors International, Biotronik, Boston Scientific, Cordis J&J, GSK, Kona, Medtronic, MicroPort Medical, CeloNova, OrbusNeich Medical, ReCore, SINO Medical Technology, Terumo Corporation, and W.L. Gore, Spectronics, CSI, Lutonix Bard, Surmodics, Microport, Meril Life Sciences.

Evolution of DES Technology

	First Gen				Second Gen				
Durable Polymer	Cypher	TAXUS Express	TAXUS Liberte		Resolute Integrity	Xience Xpedition	Promus PREMIER		
Stents									
Strut Thickness	140 μm	132 μm	96 µm		89 µm	81 µm	81 µm		
Coat Thickness	7µm / side	16µm/side	14µm/side		6μm / side	8µm / side	8µm / side		
Bioabsorbable Polymer	Biomatrix	Nobori			Firehawk	Synergy	Ultimaster		
Stents									
Strut Thickness	120 μm	125 μm			86µm	74µm	80µm		
Coat Thickness	10 µm	20 µm			10 µm	4 µm	14 μm		
		Firs	t Generation Fu	ture	Technologies				
Fully Bioresorbable	BVS	ELIXIR DESolve	DREAMS II		Polymer Free	BIOFREEDOM	Drug Filled Stent		
Stents					Stents				
Strut Thickness	150 μm	150 μm	150 μm			112	86		
Coat Thickness	3 μm / side	<3 µm / side	8 μm / side			NA	NA		

Contemporary DES Platforms <u>Strut and Coating Thickness In Perspective</u>

	Durable Poly	/mer Coated	Bioabsorbable Polymer Coated					
	Xience CoCr-EES	Resolute	Biomatrix	Nobori	SYNERGY	BioMime	Ultimaster	Orsiro
	Promus PtCr-EES	CoNi-ZES	316L-BES	316L-BES	PtCr-EES	CoCr-SES	CoCr-SES	CoCr- SES
		\bigcirc						
Strut thickness	81µm 0.0032"	89µm 0.0035"	120µm 0.0046"	125µm 0.0047"	74µm 0.0029"	65μm 0.0026"	80µm 0.0030"	61µm 0.0024"
Polymer	PVDF	BioLINX	PLA	PLA	PLGA	PLLA + PLGA	PDLLA+PC L	PLLA Probio*
Distribution / thickness	Conformal 7-8µm / side	Conformal 6µm / side	Abluminal 10µm	Abluminal 20µm	Abluminal 4µm	Conformal 2µ / 2µ	Abluminal 15µm	Conformal 3.5µm / 7.5µm

Various Biodegradable Polymers and Degradation Speed

Material	Degradation Period
50/50 Poly-DL-lactide-co-glycolide (DLPLG)	1-2 month
Poly (DL-lactide/glycolide) copolymer (PLGA)	2-3 months
Polyglycolic acid (PGA)	2-3 months
Poly DL-lactide-co-caprolactone copolymer (PDLLA+PCL)	3-4 months
85/15 Poly-DL-lactide-co-glycolide (DLPLG)	5-6 month
Poly(hydroxybutyrate/hydroxyvalerate)copolymer (PHBV)	6 months
Polylactic acid (PLA)	9 months
Polyorthoester (POE)	10 months (60%)
Poly-L-lactic acid (PLLA)	12-18 months
Polycaprolactone (PCL)	36 months

PLA Metabolic Pathway

Five-year outcome following revascularization with biodegradable polymer BES and durable polymer SES in all comer (LEADERS-TRIAL)

Cardiac Death, MI, TVR

Definite stent thrombosis

P. Serruys. J Am Coll Cardiol. 2013;6:777-89.

3 year outcome from NEXT trial Biodegredable polymer BES (Nobori, n=1617) vs. Durable polymer EES (Xience, n=1618)

Why Contemporary Durable Polymers Are Not Good Enough.

Permanent Polymers, Inflammation and Late Catch Up

Increasing inflammation

Carter AJ. Cardiovascular Research. 2004

Vascular Response following Implantation of Drug-eluting stents in Human

A 58-year-old man who had received 2 SES (for 3 years) and 1 CoCr-EES (for 7 months) died suddenly 1 day after nasal polyp surgery. DAPT was discontinued 5 days before the surgery.

(mm)

Inflammation in the 2nd-generation DES

61M, E-ZES (3 months)

51M, CoCr-EES 4 months

Chronic inflammation consisting with giant cells secondary to polymer delamination in ZES

Otsuka F, et al. Circulation. 2014;129:211-223.

Long-term TLR in major clinical trials

Change in maximum neointimal thickness in human DES autopsy

First-generation DES with localized Hypersensitivity and Malapposition

Patient #	Age (yrs)/ Sex	Lesion	Stent Type	Total Stented Segment (mm)	Duration of Implants (Months)	Indication for Implants	Clinical Presentation	Malapposition	Malapposed Distance (µm)
SES with localized hypersensitivity reaction									
1	61/M	RCA	SES	18	4	SAP	Sudden death	No	_
2*	40/F	LAD	SES	27	17	AMI	Sudden death	Yes	650
		RCA	SES	25	17	AMI		Yes	320
3	49/M	LCX	SES imes 2	27	18	UAP	AMI	Yes	1,620
4	46/M	LAD	SES	23	31	SAP	AMI	Yes	930
		RCA	$SES \times 2$	30	31	AMI		Yes	1,200
5	62/F	LAD	SES imes 3	41	36	SAP	Repeat occlusion	NAT	_

LAD: SES (17months)

RCA: SES (17months)

Nakazawa G. et al. J Am Coll Cardiol 2011;57:390-398

Hypersensitivity Reaction in 2nd generation DES

A 55-year old male who presented with unstable angina secondary to diffuse disease in the LAD; four stents were implanted (3 Resolute zotarolimus-eluting stents (R-ZES) and a single cobalt-chromium everolimus-eluting stent (CoCr-EES). At 238-days following implantation of the 4 stents the patient died suddenly.

Problems Encountered with Drug-Eluting Stents

1st-generation DES

- Thick struts
- Uneven polymer distribution with poor integrity, and thick coating of durable polymers
- High drug dose

2nd-generation DES

- Thinner struts
- More biocompatible polymer (Durable)
- Reduced drug dose

Uncovered struts

Hypersensitivity

fibrin deposition

Stent fracture

Malapposition from

Neoatherosclerosis

Clinical Late Catch-up

- Uncovered struts
- Hypersensitivity
- Malapposition from fibrin deposition
- ✓ Stent fracture
- Neoatherosclerosis
 - \square

Late Stent Thrombosis / Restenosis

Late catch-up

Uncovered struts

Hypersensitivity reaction Malapposition from excessive fibrin deposition

Neoatherosclerosis

Do Any of the Current Bioabsorable Polymers Make the Grade?

<u>Ultimaster</u>

Terumo original gradient & abluminal coating with biodegradable polymer

Material	CoCr (L605)
Thickness	80µm
# of links	2

Ultimaster vs Xience

28 days

90 days

Ultimaster vs Xience

28 days

90 days

Ultimaster vs Xience at 14days

CD31/PECAM-1 expression above struts

Strut coverage by SEM

	<u>28-day</u>	<u>45-day</u>
<u>Ultimaster</u>	82.3 (74.4-	97.1 (95.5-
®	85.7)%	98.7)%
Vience®	67.2 (47.7-	86.9 (82.4-
<u>Xience[®]</u>	78.1)%	98.9)%
V on one o [®]	100 (100-	100 (99.8-
<u>Kaname</u> °	100)%	100)%
<u>P-value</u>	U vs X , P=0.36	U vs X , P=0.22
<u>(between</u>	U vs K , P=0.02	U vs K , P=0.03
<u>different stent</u>	X vs K , P=0.02	X vs K , P=0.006
<u>type)</u>		

Data: Median value(interquartile data)

Endothelial Maturity VE-cadherin expression

VE-cadherin positive area(% of ROI)

28-day

Ultimaster [®] vs.	Mean Difference(95% CI)	P value
Ultimaster [®] -Xience [®]	17.1(1.7 to 32.4)	0.03
Ultimaster [®] -Kaname [®]	-47.3(-92.1 to -2.5)	0.04

Estimated mean: Ultimater 31.6%, Xience14.6%, Kaname78.9%

45-day

Ultimaster [®] vs.	Mean Difference(95% CI)	P value
Ultimaster [®] -Xience [®]	10.0(-0.5 to 20.6)	0.06
Ultimaster [®] -Kaname [®]	-28.3(-18.2 to -8.3)	0.06

Estimated mean: Ultimater 47.7%, Xience37.7%, Kaname76.0%

Ultimaster[®]

Xience®

White Blood Cell Adherence

VE-cadherin

Stent Type	<u>28-day</u>	<u>45-day</u>
<u>Ultimaster®</u> (number/mm²)	156(48-508)	181(90-366)
<u>Xience®</u> (number/mm²)	193(59-635)	731(348-1537)
<u>Kaname[®] (number/mm²)</u>	385(118-1250)	132(63-277)
P-value	K vs U, P=0.25	K vs U, P=0.53
(between different stent type)	K vs X, P=0.33	K vs X, P=0.04
	U vs X, P=0.72	U vs X, P=0.053

U:Ultimaster[®], X:Xience[®], K:Kaname[®], 28:28-day, 45:45-day, 120:120-day, Data are shown as estimated mean value with 95% confidence interval

CENTURY II

Cohort JR

Target Lesion Failure Clinical Outcome @ 9 months

9 months = 284 days

TLF = composite of cardiac death, target vessel MI and clinically driven TLR

Conclusions

- Permanent polymers are associated with chronic inflammation and late catch up
- Preclinical rabbit studies show significantly less uncovered struts at 28-days and less fibrin at 90- days in Ultimaster than Xience by light microscopy.
- By confocal and SEM the endothelial coverage in rabbit iliac arteries was greater with higher maturation (i.e. more VE cadherin expression) in Ultimater than Xience.
- Not all polymers are created equal. The quantity and quality and the rate of degradation of the biodegradable polymers determines the extent of inflammation, which regulates neointimal thickening.
- Clinical studies suggest either non-inferior or superiority of bioabsorable polymer as compared to durable polymer stents

Acknowledgments

CVPath Institute

Hiroyoshi Mori, MD Kazuyuki Yahagi, MD Emanuel Harari, MD Christoph Lutter, MD Elena Ladich, MD Robert Kutz, MS Ed Acampado, DVM Youhui Liang, MD Abebe Atiso, HT **Jinky Beyer** Lila Adams, HT Frank D Kolodgie, PhD Liang Guo, PhD Harry Davis, PhD Renu Virmani, MD

1. Porcine AV shunt: carotidjugular using customized sheath

2. Arterialized flow using Sylgard tube

3. Thrombus formation after 1 hour

In vitro cell culture of Porcine endothelial cells, grown in Sylgard Elastomer Tubes with Xience and Synergy stents under flow conditions for 4 days

 \uparrow Setup for flow conditions in CO2 incubator.

VPath

0

↑ DES after 4 d in static conditions.(Green = Phalloidin, Blue = DAPI)

\downarrow Strut coverage in DES (4d static)

Abbott Vision

Abluminal side

Luminal side