Left Main and Bifurcation PCI: Prospects and Challenges

3-D OCT Guided Bifurcation PCI

Yoshinobu Murasato, MD, PhD Department of Cardiology, Kyushu Medical Center, Fukuoka, Japan

22nd Cardiovascular Summit, TCTAP 2017, April25-27, Seoul

Conflict of Interest

Grant support: St. Jude Medical

A 3D-OCT Investigation into Coronary Artery Bifurcation Lesion Stent Implantation Technique

3D-OCT Bifurcation Registry

Should we treat SB? Is remained jailed struts harmful?

Intimal proliferation on the jailed struts

LCX ostial restenosis after crossover stenting without KBI

Fujino Y et al. Int J Cardiol. 2017 230, 284-292

Correlation between LCX ostium area narrowing and jailed struts number

Fujino Y et al. Int J Cardiol. 2017 230, 284-292

CFD simulation based on 3-D OCT images in 9mo F/U

Fujino Y et al. Int J Cardiol. 2017 230, 284-292

SB Dilation or Not?

Complete removal of the jailed struts and optimal dilation in each branch will promote ideal intimal coverage with less restenosis.

Intimal Coverage on the jailed struts

What's new for achieving complete removal of jailed struts without any serious stent deformation?

Design

Multicenter prospective non-randomised observational study from 10 Japanese Centers

Aim To investigate the effect of the detection of guide wire (GW) recrossing point to the SB using 2D/3D OCT on the bifurcation stenting

Objective

168 bifurcation lesions in 167patients who underwent bifurcation stenting under the guidance of OCT

Period

2014/06/01~2015/12/31

Junya Shite & Takayuki Okamura (Saiseikai Nakatsu Hp) (Yamaguchi Univ) Stent enhanced 3D OCT

Okamura et.al EuroIntervention 2014

2D OCT on site

GW recrossing

Appropriate cell

3D OCT reconstructed in core laboratory

Pattern of link-connection and GW crossing point

Okamura T et al. EuroIntervention, 2014

Study flow

Feasibility of assessment of GW recrossing point in 3D OCT

107/119 (89.9%)

GW shadow9 (7.6%)NURD3 (2.5%)

NURD: non-uniform rotational distortion

Free Carina type

GW recrossing in the optimal distal cell of the free carina type leads to wide opening of the SB without remained jailed struts.

Connecting to carina type

Suboptimal

Once the link-connection locates closed to carina, it is difficult to remove the jailed struts by KBI.

Distribution of GW recrossing pattern

		Link connection in SB ostium			
		All	Link (-)	Link(+)	
Distal Rewiring	All		58 (56%)	46 (44%)	
	Yes	88 (85%)	55 (53%)	33 (32%)	
	No	16 (15%)	3 (3%)	13 (12%)	

Optimal (A) :

Suboptimal (B) :

Okamura T, Murasato Y, Shite J et al. submitting

ISA in the bifurcation after KBI

Okamura T, Murasato Y, Shite J et al. submitting

Frequency of connecting carina type in each stent

More link number resulted in more frequent connecting to carina type.

Incidence of ISA in the SB ostium

There were no differences in the ISA regardless of frequency of connecting to carina type.

Link connection in SB ostium: 3-link vs. 2-link stent

3-link Xience

Link with single strut is easy to be expanded.

2-link Ultimaster

Link with tough connection of 4 struts is hard to be removed from SBOS.

<u>2D vs. 3D OCT</u>

	All (n = 106)	3D (n = 56)	2D (n = 50)	P value
Optimal recrossing (%)	54/106	32/56 (57) 32/32 (100)	23/50 (46)	P = 0.25
	54/50	52/52 (100)	22/20 (83)	r-0.024
Distal recrossing (%)	89/106 (84)	51/56 (91)	38/50 (76)	P = 0.035
Average recross times (min-max times)	1.33±0.60 (1-3)	1.55±0.69 (1-3)	1.08±0.34 (1-3)	P < 0.001
≥2 recross (%)	28/106 (26)	25/56 (45%)	3/50 (6%)	P < 0.001
Contrast volume (ml)	158 ± 51.1	146 ± 45.2	171 ± 54.5	P = 0.013
Radiation time (min)	34.3 ± 16.6	37.3±17.1	31.1 ± 15.7	P = 0.059
Operation time (min)	100 ± 36.2	110 ± 36.4	87.6±32.2	P = 0.0032

3D OCT Bifurcation Registry

Far distal cell recrossing

GW recross in far distal cell leads to distortion of the stent.

GW recross

After FKB

Nakao F, AsiaIntervention 2015;1:71

GW recross in the proximal cell **GW** recrossing

Murasato Y & Foin N. AsiaInterv, in print

Actually, the GW slipped under the proximal stent strut.

SB ballooning

The proximal strut was raised up and protruded into the MV (yellow circle). No strut was observed in the area proximal to the SB ostium (blue circle).

Connecting to carina type in 2-link stent

Unsolved issue Aggressive SB dilatation or leave without any procedure? Any other novel technique?

A novel push-fold method for removing side branchjailed stent struts under 3D-OCT

Nagoshi R, Okamura T, Shite J. J Am Coll Cardiol Intv. 2016;9:e107

a) 1st GW recross

b) 2nd GW recross

c) Balloon push over stent side

d) After KBI

f) Diagonal view

Conclusion

- Confirmation of GW recrossing point and linkconnection in the SBOS under the high-resolution 3D OCT guidance may improve clinical outcome of the bifurcation intervention.
- We will investigate the efficacy of 3D OCT guided bifurcation PCI in the next Japanese 3D-OCT Bifurcation Registry in which 1000 cases will enroll.

Thank you for your attention!

