New Era of Interventional Treatment in Pulmonary Hypertension:

Balloon pulmonary angioplasty for CTEPH

Osung Kwon, MD Heart Institute, University of Ulsan College of Medicine, Asan Medical, Seoul, Korea

Definition of CTEPH

CTEPH (chronic thromboembolic pulmonary hypertension) is often a sequel of venous thromboembolism with fatal natural history

After 3 months of therapeutic anticoagulation

- mPAP ≥25 mmHg
- PCWP ≤15 mmHg

Chronic/organized
occlusive thrombi/emboli

Overall Prevalence of CTEPH

- CTEPH has been reported with a cumulative incidence of 0.1–9.1% within the first 2 years after a symptomatic PE event
- Some data suggest that CTEP may occur in approximately 5 individuals per million population per year

2015 ESC/ERS guidelines

Prevalence of CTEPH in PH Patients

Strange G, et al. Heart 2012

Pattern of CTEPH

679 CTEPH patients from an International Prospective Registry

CardioVascular Research Foundation

Circulation 2011;124:1973-1981

Guideline of CTEPH Treatment

Guideline of CTEPH Tx

Recommendations	Class ^a	Level ^b	Ref. ^c
Interventional BPA may be considered in patients who are technically non-operable or carry an unfavourable risk:benefit ratio for PEA	ШЬ	C	57, 444– 446, 448
Screening for CTEPH in asymptomatic survivors of PE is currently not recommended	Ш	U	417

OPERABILITY ASSESSMENT

Case: 64 male patient with CTEPH Eligible for Endarterectomy

9YA acute PE with DVT -> thrombolysis and anticoagulation 2YA CTEPH -> sildenafil Echo: TR Vmax 4.4 m/s PG 77mmHG RV dysfunction (+) referred for stomach cancer operation

Preoperative RHC and PEA

	_	max	min	mean
Assumed VO	2 (ml/min/m ²)		227.5	
Hemoglobin	(g/dL)		16.9	
Aorta	Pressure	98	57	74
Aorta(PV)	Saturation		97	
Aorta(PV)	PaO2		85	
SVC	Saturation		62	
IVC	Saturation		63	
MV O2			62.25	
RA	Pressure	14	9	9
RV	Pressure	82	6	14
MPA	Pressure	88	22	42
	Saturation		59	
	PaO2		25	
PCW(LA)	Pressure	12	11	10

PBF(Qp) (L/min)	2.55	
SBF(Qs) (L/min)	2.79	
Qp/Qs	0.92	
Total PVR (Wood units)	12.54	

Angiographic Findings of CTEPH Lesions

Suitable for intervention

Not suitable for intervention

Evolution of BPA Strategy

Initial Strategy 2004~2012.Oct

As large as possible

2 vessels

Previous Strategy 2012.Nov~2013.Nov

type and mPAP

2 vessels

Current Strategy 2013.Dec~

Under sized corresponding to lesion type and mPAP

As many as possible

Balloon size

Treated vessels

JAPAN - Kyorin University School

Percutaneous Transluminal Pulmonary Angioplasty for the Treatment of Chronic Thromboembolic Pulmonary Hypertension

Masaharu Kataoka, MD; Takumi Inami, MD; Kentaro Hayashida, MD; Nobuhiko Shimura, MD; Haruhisa Ishiguro, MD; Takayuki Abe, PhD; Yuichi Tamura, MD; Motomi Ando, MD; Keiichi Fukuda, MD; Hideaki Yoshino, MD; Toru Satoh, MD

- **Background**—Chronic thromboembolic pulmonary hypertension leads to pulmonary hypertension and right-sided heart failure. The purpose of this study was to investigate the efficacy of percutaneous transluminal pulmonary angioplasty (PTPA) for the treatment of chronic thromboembolic pulmonary hypertension.
- Methods and Results—Twenty-nine patients with chronic thromboembolic pulmonary hypertension underwent PTPA. One patient had a wiring perforation as a complication of PTPA and died 2 days after the procedure. In the remaining 28 patients, PTPA did not produce immediate hemodynamic improvement at the time of the procedure. However, after follow-up $(6.0 \pm 6.9 \text{ months})$, New York Heart Association functional classifications and levels of plasma B-type natriuretic peptide significantly improved (both P<0.01). Hemodynamic parameters also significantly improved (mean pulmonary arterial pressure, 45.3 ± 9.8 versus $31.8 \pm 10.0 \text{ mm}$ Hg; cardiac output, $3.6 \pm 1.2 \text{ versus } 4.6 \pm 1.7 \text{ L/min}$, baseline versus follow-up, respectively; both P<0.01). Twenty-seven of 51 procedures in total (53%), and 19 of 28 first procedures (68%), had reperfusion pulmonary edema as the chief complication. Patients with severe clinical signs and/or severe hemodynamics at baseline had a high risk of reperfusion pulmonary edema.
- **Conclusions**—PTPA improved subjective symptoms and objective variables, including pulmonary hemodynamics. PTPA may be a promising therapeutic strategy for the treatment of chronic thromboembolic pulmonary hypertension.
- Clinical Trial Registration—URL: http://www.umin.ac.jp. Unique identifier: UMIN000001572. (Circ Cardiovasc Interv. 2012;5:756-762.)

Key Words: chronic thromboembolic pulmonary hypertension ■ hypertension ■ pulmonary ■ percutaneous transluminal pulmonary angioplasty ■ reperfusion pulmonary edema

Immediate effect of BPA was minimal

Table 2. Acute Hemodynamic Effects of PTPA

	Just Before PTPA LS mean±SE	Just After PTPA LS mean±SE	<i>P</i> -value
Mean RAP, mm Hg	5.2 ± 0.6	5.0 ± 0.6	0.82
Mean PAP, mm Hg	41.8 ± 1.7	40.8 ± 1.7	0.42
CO, L/min	3.8 ± 0.2	3.9 ± 0.2	0.55

Mid-term (median 6.0 month) effect of BPA was excellent

Figure 3. Hemodynamic changes at follow-up after percutaneous transluminal pulmonary angioplasty. Mean RAP (**A**), mean PAP (**B**), and CO (**C**) improved significantly at follow-up. *P < 0.01 vs baseline. RAP indicates right atrial pressure; PAP, pulmonary arterial pressure; and CO, cardiac output.

Long-Term Outcomes After BPA 649 consecutive BPA in 170 CTEPH patients median 2.8 years (IQR; 1.2-4.1 years)

CardioVascular Research Foundation

Circulation. 2016;134:2030-2032

JAPAN – Okayama Medical Center

Refined Balloon Pulmonary Angioplasty for Inoperable Patients with Chronic Thromboembolic Pulmonary Hypertension

Hiroki Mizoguchi, MD; Aiko Ogawa, MD, PhD; Mitsuru Munemasa, MD, PhD; Hiroshi Mikouchi, MD, PhD; Hiroshi Ito, MD, PhD; Hiromi Matsubara, MD, PhD

- Background—Although balloon pulmonary angioplasty (BPA) for inoperable patients with chronic thromboembolic pulmonary hypertension was first reported over a decade ago, its clinical application has been restricted because of limited efficacy and complications. We have refined the procedure of BPA to maximize its clinical efficacy.
- Methods and Results—Sixty-eight consecutive patients with inoperable chronic thromboembolic pulmonary hypertension underwent BPA. We evaluated pulmonary artery diameters and determined the appropriate balloon size by using intravascular ultrasound. We performed BPA in a staged fashion over multiple, separate procedures to maximize efficacy and reduce the risk of reperfusion pulmonary injury. A total of 4 (2–8) sessions were performed in each patient, and the number of vessels dilated per session was 3 (1–14). The World Health Organization functional class improved from 3 to 2 (P<0.01), and mean pulmonary arterial pressure was decreased from 45.4±9.6 to 24.0±6.4 mm Hg (P<0.01). One patient died because of right heart failure 28 days after BPA. During follow-up for 2.2±1.4 years after the final BPA, another patient died of pneumonia, and the remaining 66 patients are alive. In 57 patients who underwent right heart catheterization at follow-up, improvement of mean pulmonary arterial pressure was maintained (24.0±5.8 mm Hg at 1.0±0.9 years). Forty-one patients (60%) developed reperfusion pulmonary injury after BPA, but mechanical ventilation was required in only 4 patients.
- Conclusions—Our refined BPA procedure improves clinical status and hemodynamics of inoperable patients with chronic thromboembolic pulmonary hypertension, with a low mortality. A refined BPA procedure could be considered as a therapeutic approach for patients with inoperable chronic thromboembolic pulmonary hypertension. (Circ Cardiovasc Interv. 2012;5:748-755.)

Key Words: peripheral vascular disease ■ pulmonary hypertension ■ reperfusion ■ revascularization

FU; median 2.2 year

Table 1. Clinical and Hemodynamic Data Before and After BPA

	Before BPA (n=68)	After BPA (n=67)	P Value
WHO functional class (I/II/III/IV)	3 (0/0/49/19)	2 (11/53/3/0)	<0.01
Oxygen inhalation (L/min)	3.0±1.4	1.3±1.0	<0.01
6MWD, m	296±108	368±83	< 0.01
BNP, pg/mL	330 ± 444	35±55	< 0.01
sPAP, mm Hg	81.3±16.9	42.3±11.9	< 0.01
dPAP, mmHg	24.3±7.1	13.4±4.8	<0.01
mPAP, mm Hg	45.4±9.6	24.0±6.4	< 0.01
RAP, mm Hg	8.1±4.4	1.9±1.5	< 0.01
CI, L/min/m ²	2.2±0.7	3.2±0.6	< 0.01
PVR, dyne sec/cm⁵	942±367	327±151	< 0.01

Medical Tx vs. BPA for CTEPH: **Systemic Review and Meta-Analysis**

(A)

Study name	Subgroup within study	Statistics for each study				
		Std diff in means	Standard error	Lower	Upper limit	p-Value
Inami	BPA	1.361	0.118	1.129	1,592	0.000
Sugimura	BPA	0.978	0.272	0.445	1.510	0.000
Mizoguchi	BPA	0.720	0.106	0.512	0.928	0.000
Fukui	BPA	1.032	0.233	0.576	1.487	0.000
Tanaguchi	BPA	0.934	0.172	0.596	1.272	0.000
		0.996	0.066	0.866	1.126	0.000
Skoro-Sajer	medical	0.517	0.165	0.193	0.840	0.002
Hoeper	medical	0.605	0.199	0.216	0.994	0.002
Hughes	medical	0.444	0.121	0.206	0.681	0.000
Reichberger	medical	0.397	0.079	0.242	0.553	0.000
Cabrol	medical	0.623	0.176	0.277	0.968	0.000
Scelsi	medical	0.843	0.272	0.311	1.376	0.002
Ghofran/2	medical	0.535	0.239	0.067	1.004	0.025
Bonderman	medical	0.748	0.219	0.318	1.177	0.001
Seyfarth	medical	0.883	0.264	0.366	1.399	0.001
Vasallo	medical	0.331	0.193	-0.047	0.709	0.086
		0.496	0.049	0.400	0.592	0.000
		0.673	0.039	0.595	0.750	0.000

(B)

Study name	Subgroup within study		ich study	2		
		Event rate	Lower limit	Upper limit	Z-Value	p-Value
Sugimura	BPA.	0.500	0.244	0.756	0.000	1,000
Mizoguchi	BPA	0.993	0.895	1.000	3.466	0.001
Tanaguchi	BPA	0.414	0.252	0.596	-0.924	0.356
		0.723	0.281	0.946	0.990	0.322
Skoro-Sajer	medical	0.520	0.331	0.704	0.200	0.842
Hoeper	medical	0.222	0.086	0.465	-2.210	0.027
Hughes	medical	0.244	0.141	0.390	-3.253	0.001
Ghofrani1	medical	0.293	0.174	0.448	-2.571	0.010
Reichberger	medical	0.126	0.075	0.205	-6.521	0.000
Cabrol	medical	0.333	0.183	0.527	-1.698	0.090
Scelsi	medical	0.545	0.268	0.797	0.301	0.763
Ono	modical	0.500	0.294	0.706	0.000	1.000
Seyfarth	medical	0.500	0.244	0.756	0.000	1.000
Vasallo	medical	0.353	0.168	0.596	-1.194	0.232
		0.336	0.239	0.449	-2.800	0.005
		0.358	0.260	0.470	-2.476	0.013

-2.00

-1.00

Event rate and 95% CI

6-min Walk Distance

NYHA Functional Class

Heart Lung Circ. 2017 Mar 1

Medical Tx vs. BPA for CTEPH: Systemic Review and Meta-Analysis

Std diff in means and 95% CI

(A)

Study name	Subgroup within study		Statistics for each study			
		Std diff in means	Standard error	Lower	Upper limit	p-Value
Inami	BPA	-6.644	0.408	-7.444	-5.843	0.000
Andreassen	BPA	-1.136	0.234	-1.595	-0.677	0.000
Sugimura	BPA	-1.894	0.374	-2.626	-1.161	0.000
Mizoguchi	BPA	-0.811	0.109	-1.025	-0.598	0.000
Fukui	BPA	-1.490	0.252	-1.983	-0.997	0.000
Tanaguchi	BPA	-2.811	0.320	-3.438	-2.184	0.000
		-2.432	0.654	-3.713	-1.151	0.000
Hosper	medical	-0.750	0.207	-1.155	-0.345	0.000
Hughes	medical	-0.091	0.147	-0.378	0.197	0.535
Reichberger	medical	-0.052	0.076	-0.202	0.097	0.494
Cabrol	medical	-0.583	0.175	-0.925	-0.240	0.001
Ghofrani2	medical	-0.692	0.249	-1.180	-0.204	0.005
Ono	medical	-0.386	0.180	-0.738	-0.034	0.032
		-0.386	0.132	-0.644	-0.128	0.003

-0.468

0.129 -0.718 -0.213

0.000

mPAP

(B)

Study name	Subgroup within study		Statistics f			
		Std diff in means	Standard error	Lower limit	Upper limit	p-Value
nami	BPA	-3.165	0.208	-3.573	-2.756	0.000
Indreasen	BPA	-0.757	0.207	-1.163	-0.351	0.000
Sugimura	BPA	-1.460	0.321	-2.089	-0.830	0.000
Azoguchi	BPA	-1.685	0.147	-1.974	-1.397	0.000
¹ ukui	BPA	-1.161	0.224	-1.600	-0.721	0.000
anaguchi	BPA	-1.567	0.215	-1.988	-1.146	0.000
		+1.636	0.335	-2.293	-0.978	0.000
skoro-Sajer	medical	-0.324	0.182	-0.681	0.034	0.076
loeper	medical	-0.998	0.223	-1.436	-0.560	0.000
lughes	medical	-0.189	0.148	-0.478	0.101	0.202
Reichberger	medical	-0.181	0.077	-0.331	-0.030	0.019
Cabrol	medical	-0.957	0.195	-1.339	-0.574	0.000
Shofrani2	medical	-0.770	0.255	-1.269	-0.271	0.002
onc	medical	-0.406	0.180	-0.759	-0.053	0.024
		-0.509	0.131	-0.767	-0.262	0.000
		-0.659	0.122	-0.899	-0.419	0.000

Std diff in means and 95% CI

PVR

Heart Lung Circ. 2017 Mar 1

- 60/F, HTN/hyperlipidemia
- <u>1st time refer; 2015/04 DOE Fc I-II</u>
- Echo; normal, TR-Vmax; 2.5, trace,
- EKG; NSR, CXR; normal
- 2nd time refer: 2015/11 DOE Fc III, clinic oxygen sat. 85%
- ABGA; 7.4-29.6-66.9-93.9 (room air)
- Echo; severe RV dysfunction, TR-Vmax 4.3 (PG=74)

- 2. Mosaic pattern of lung attenuation.
- 3. Enlarged pulmonary trunk and right heart dysfunction.
- r/o pulmonary artery hypertension.

Patient ID: 41632624

Study Date: 11/4/2015

ent Name: CHOI, MYEONG WOON, F60

udy Name: Lung Perfusion Scan

Lung Perfusion Scan 99mTc-MAA

ANT

RAO

Baseline Pul. Angio

BPA

Echo FU at 1 Mo after BPA

ASAN Medical Center

POST

- 37Yr, Female,
- 2015 fever, cough, dyspnea
- Diagnosis of Takayasu's arteritis with aorta and pulmonary involvement
- Sildenafil, Bosentan medication \rightarrow dyspnea aggravation
- 6min walk test; 486m, HR 120, SaO2 91
- ESR 16 mm/hr (0-20), CRP 0.3 mg/dl (0-0.6)

Large V/Q Mismatch

Lung inhalation scan

Lung perfusion scan

CardioVascular Research Foundation

1Mo FU

CardioVascular Research Foundation

- 36Yr, Male
- Mar/2015; diagnosis of DVT, warfarin therapy start
- Sep/2015; sudden dyspnea after stopping of warfarin 2Mo
- → Cardiac arrest, CPR, ECMO/hypothermia
- → Pul. Thromboembolectomy, IVC embolectomy and ASD creation
- May/2016; ASD device closure
- DOE Fc III, remained large lung perfusion defect

Large V/Q Mismatch

Lung inhalation scan

Lung perfusion scan

Cardio Vascular Research Foundation

BPA - final

In Summary

- There is only low-/moderate-quality evidence from observational studies supporting the efficacy of BPA in improving both hemodynamics and exercise capacity.
- It is still unclear whether targeted medical therapy or BPA should be offered as first-line treatment for patients with inoperable CTEPH, since direct comparative studies are lacking.
- Further RCTs and prospective observational studies are needed in well-defined patients with inoperable CTEPH.

