Jin-Ho Choi

Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

TCTAP 2015, Seoul, Korea, 2015-4-29

• Limited data, limited large-scaled study

- Limited data, limited large-scaled study
- PCI procedural success is the best predictor for favorable prognosis

- Limited data, limited large-scaled study
- PCI procedural success is the best predictor for favorable prognosis – historical and meta-analysis data

Meta-analyses or multi-national studies: success versus failed CTO PCI								
Publication	Studies	Patients	F/U period	Mortality	MI or MACE	Need of CABG		
Hoebers, IJC 2015	27	15,432	-	OR=0.5 (0.4 - 0.6), p<0.001	-	-		
Christakopoulos, AJC 2015	25	28,486	-	OR=0.52 (0.43 – 0.63), p<0.001	OR=0.73 (0.52 – 1.03), P=NS	OR=0.18 (0.144 –0.22), p<0.01		
George, JACC 2014	UK	13,443	2.7 year	HR=0.70 (0.56 – 0.87), p=0.002	-	-		
Khan, CCI 2013	23	12,970	3.7 year	RR=0.54 (0.45 – 0.65), p<0.001	RR=0.70 (0.60 – 0.83), p<0.001	RR=0.25 (0.21 – 0.30), p<0.001		
Panchly, AJC 2013	13	3,932	-	OR=0.39 (0.31 – 0.49), p<0.001	-	-		
Mehran, JACC Int 2011	3 centers	1,791	2.9 year	HR=0.40 (0.21 – 0.75), p<0.01	-	HR= 0.21 (0.13 – 0.40), p<0.01		
Joyal, AHJ 2010	13	7,288	-	OR=0.56 (0.43 – 0.72), p<0.001	OR=0.74 (0.44-1.25), p=NS	OR=0.22 (0.17 – 0.27), p<0.001		

- Limited data, limited large-scaled study
- PCI procedural success is the best predictor for favorable prognosis

Schematic image of CTO vessel and donor vessel supplying collateral flow

CTO lesion

Schematic image of CTO vessel and donor vessel supplying collateral flow

CTO lesion

Myocardium subtended by CTO vessel (red area: ischemic myocardium)

Schematic image of CTO vessel and donor vessel supplying collateral flow

Myocardium subtended by CTO vessel (red area: ischemic myocardium)

CTO PCI supplying viable myocardium \rightarrow a large benefit

Amount of saved ischemic myocardium by CTO PCI

CTO PCI supplying minimally viable myocardium \rightarrow a limited benefit

Infarct scar

Amount of saved ischemic myocardium by CTO PCI

Cardiac MRI study

Well-developed collateral

→ more viable myocardium, less infarct transmurality, better wall motion

Choi, Circulation 2013

Cardiac MRI study

Well-developed collateral

→ more viable myocardium, less infarct transmurality, better wall motion

Choi, Circulation 2013

Doppler wire study: Less distal vessel endothelial dysfunction in case of Well-developed collaterals Vessel diameter

Doppler wire study after CTO PCI, 19 patients

- Vasoconstriction with Ach
- No response to adenosine
- Vasodilatation with NG

Coronary blood flow

Brugaletta, JACC Int 2012

Doppler wire study: Less distal vessel endothelial dysfunction in case of Well-developed collaterals

Vessel diameter

CTO is "Inter-Bifurcation" disease

- 1. Subclinical thrombotic occlusion and progression of occlusive lesion (until branches)
- 2. Organized thrombi and proteoglycan/fibrin \rightarrow Type I collagen and calcification
- 3. Negative remodeling of CTO body
- 4. Microchannel formation intraplaque, or connected to vasa vasorum

Modified from Feyter, Niemann, EuroPCR 2011; Sumitsuji, JACC Interv 2012

True CTO is inter-bifurcation disease

Choi, JACC Int 2015, in press

True CTO is inter-bifurcation disease

Side branches of CTO should be opened to achieve

maximal increase of perfusion

Higher collateral flow through welldeveloped collateral vessel that flows in antegrade or retrograde direction Less distal arterial flow compared to vessel with CTO

Choi, JACC Int 2015, in press

Proximal and distal side branch of CTO vessel

Myocardium subtended by CTO vessel

Proximal and distal side branch of CTO vessel needs to be saved

Persistently ischemic myocardium

Amount of saved ischemic myocardium by CTO PCI

Potential disadvantage of subintimal tracking and reentry technique

- A bail-out maneuver with lower procedural success rate
- May lose distal side branches
- May lead to higher restenosis rate

СТО

Stent implanted in true lumen

Stent with subintimal tracking or jailed side branch

Outcome of STAR or subintimal tracking technique

Publication	Tech	Ν	Restenos	is MACE
Galassi, Can J Cardiol 2014	Mini-STAR as bail-out	100	25%	11%
Godini, CCI, 2012	STAR	281	54%	-
	conventional	74	30%	-
Rinfret, AJC 2014	STAR	82	-	Log-rank P=0.17
	conventional	105	-	
Muramatsu, Euroint 2014	Subintimal tracking (ante or retro approach)	31	13%	
	No subintimal tracking (ante or retro approach)	125	10%	

Higher MACE and restenosis STAR technique, a single center study

Single center study

CTO PCI success rate = 77% (N=802), CAG F/U rate 82%

Reocclusion rate of non-STAR:3% (30/588)Reocclusion rate of STAR:57% (16/28)

Significantly higher MACE in STAR group.

Valenti, JACC 2013

CTO PCI reduce the burden of donor vessel

Donor vessel only

If CTO is opened, both vessels can supply myocardium

Both CTO vessel and donor vessel are functionally significant

Myocardium subtended by CTO vessel Myocardium-at-risk or ischemic and subtended by donor vessel

CTO PCI relieves the burden of donor vessel

Myocardium saved by CTO PCI Less myocardial ischemia or less myocardium-at-risk Modest improvement of major donor vessel hemodynamics after CTO PCI

• 34 CTO PCI, physiological study

FFR = 0.782 → 0.810 (p<0.001)

Donor flow decreased in both baseline and hyperemia

Predominant donor vessel

Ladwiniec, Circ Int 2015; (Sachdeva CCI 2013)

Complete revascularization of CTO

CTO lesion

Donor vessel

Myocardium saved by CTO PCI Myocardium saved by donor vessel PCI

Complete CTO PCI was better than partial or failed PCI

Complete revascularization for multiple CTO

Florence CTO PCI registry

Multiple CTO, N=120 (mean Syntax score = 41) 1,0 96% ± 3% Cardiac Death Free Survival Less cardiac death in complete revascularization 0,9 0,8p=0.002 78% ± 7% 0,7-Complete Revascularization 0,6-Incomplete Revascularization 0,5 720 360 540 180 0 No. at risk 73 73 73 Complete Revascularization 73 45 Incomplete Revascularization 47 41 41 36 30

Time (days)

Danzi, AJC 2013

Angiographic predictor of (potentially good) prognosis after CTO PCI

1. PCI for CTO increases perfusion to viable myocardium

- Well-developed collateral
- Large and functional vessel

2. PCI for CTO maximizes perfusion

- No side branch loss
- Minimal or absent subintimal tracking (that results in side branch loss)

3. PCI for the patient maximizes perfusion

Complete revascularization including donor vessel

Angiographic predictor of (potentially good) prognosis after CTO PCI

1. PCI for CTO increases perfusion to viable myocardium

- Well-developed collateral
- Large and functional vessel

2. PCI for CTO maximizes perfusion

- No side branch loss
- Minimal or absent subintimal tracking (that results in side branch loss)

3. PCI for the patient maximizes perfusion

Complete revascularization including donor vessel

None of above has been validated in large clinical datasets

"Prediction is very difficult, especially if it's about the future."

Niels Bohr, 1922 Nobel prize laureate

"We will find a way, we always have."