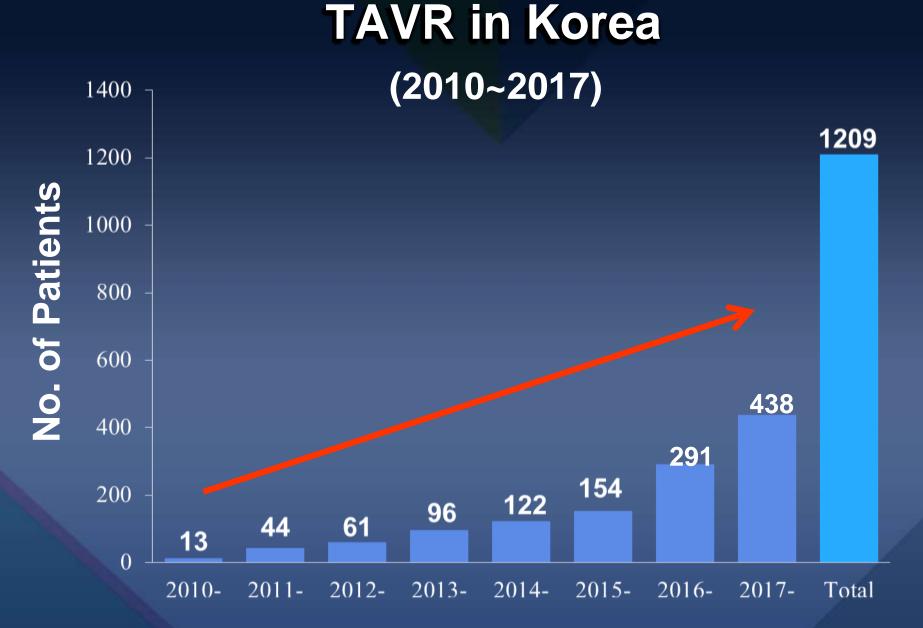
Mainstream of TAVR: Minimalist Approach

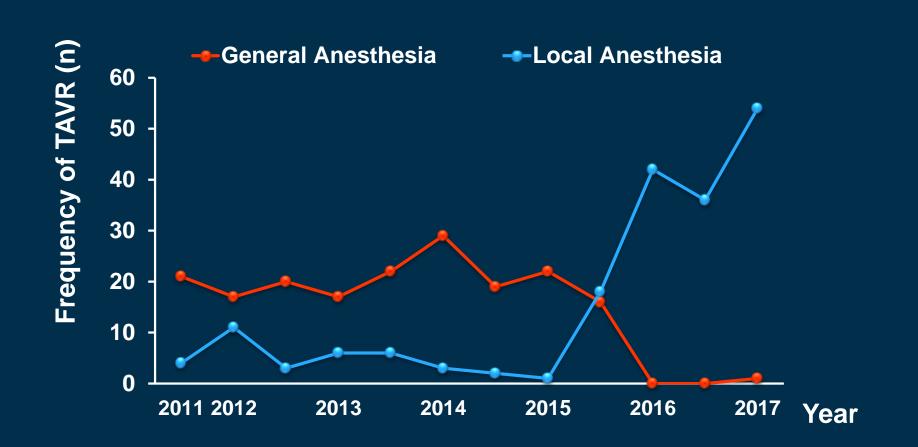
Duk-Woo Park, MD, PhD Department of Cardiology, Ulsan College of Medicine, Asan Medical Center

Conflict of Interest Statement


Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship Consulting Fees/Honoraria Consulting Fees/Honoraria Consulting Fees/Honoraria

<u>Company</u> Edwards LifeSciences Medtronic Inc Boston Scientific



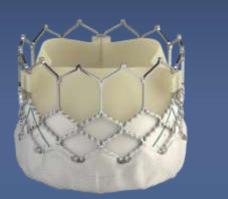
Current TAVR Status in Korea

	N=623
Approach	
Femoral	614 (97.8%)
Apical	11 (1.8%)
Subclavian	3 (0.5%)
Operation room	
Hybrid room	358 (57.0%)
Cath room	270 (43.0%)
Anesthesia duration (mins)	131.5±43.2
General anesthesia	533 (84.9%)
Conscious sedation	95 (15.1%)

"Minimalist Approach" TAVR in AMC

CURF

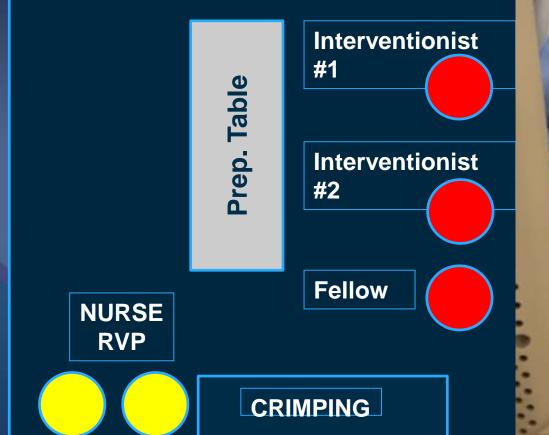
"Minimalist Approach" TAVR in AMC


- Conscious Sedation, No General Anesthesia
 No TEE, but TTE
- No central venous catheter (i.e. jugular)
- No Foley
- <1 hour Procedure</p>
- Early assessment of neurologic status
- Early recovery, shorter length of stay, discharge on Day #3
- Less Complications, Better Outcomes

What has allowed Minimalist TAVR evolution?

 Newer-generation TAVR systems (lower profile, more predictable deployment)

Standard TAVR VS. Minimal TAVR



Minimal Approach:

«Assisting Staff»:
• Anesthetist (stand-by)
• Cardiac surgeon (near-by)

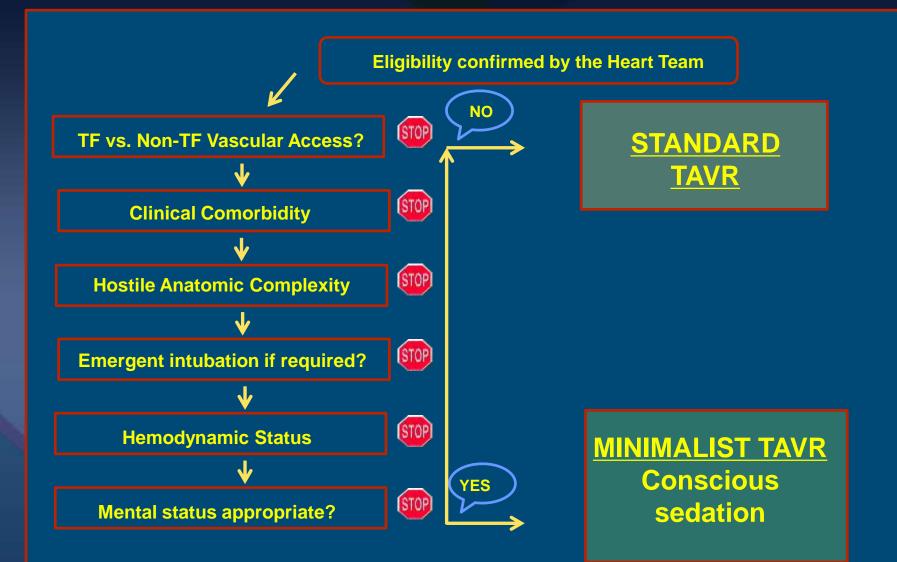
"Minimalist Approach" Post TAVR Care in AMC

Short stay (1 day) in ICU

- Optional temporary pacemaker
- Early mobilization
- Avoid polypharmacy
- Cardiac Rehabilitation Clinic

Minimalist TAVR: Why? For What?

Patient Side


- Less invasive approach
- Least amount of morbidity
- Decreased pain
- Rapid return to normal activity
- Cognitive recovery
 Short hospitalization

Hospital Side

- Increased costeffectiveness
- Less resource utilization
- Patient satisfaction
- Optimal hospital bed flow

Minimalist TAVR: Almost, but Selective

Minimalist TAVR

• Goals

Patient safety is paramount! To maintain superior outcomes, short and long term -this is not the pathway for every patient (selective is more sense, extreme minimalism is dangerous)

- Ensure procedural refinement first and foremost
 - Vast experience & comfort level of the Heart Team
 - Completely percutaneous approach no cutdowns
 - Consistent positive clinical outcomes

Standard vs. Minimalist TAVR in AMC Baseline Characteristics

	Overall (N = 403)	General Anesthesia (N = 200)	Conscious Sedation (N = 203)	P value
Age	78.8 ± 5.0	77.9 ± 5.3	79.7 ± 4.6	0.001
Male sex	189 (46.9%)	99 (49.5%)	90 (44.3%)	0.30
BMI, kg/m ²	24.0 ± 3.3	24.1 ± 3.2	23.8 ± 3.4	0.41
STS risk score, %	4.1 ± 3.2	4.2 ± 3.8	4.0 ± 2.5	0.57
DM	128 (31.8%)	67 (33.5%)	61 (30.0%)	0.39
HTN	339 (84.1%)	168 (84.0%)	171 (84.2%)	0.94
Atrial fibrillation	57 (14.1%)	28 (14.0%)	29 (14.3%)	0.92
CAD	143 (35.5%)	78 (39.0%)	65 (32.0%)	0.11
Previous MI	19 (4.7%)	6 (3.0%)	13 (6.4%)	0.12
Previous stroke	39 (9.7%)	16(8.0%)	23 (11.3%)	0.22
PVD	21 (5.2%)	13 (6.5%)	8 (3.9%)	0.31
СКD	114 (28.3%)	61 (30.5%)	53 (26.1%)	0.29
COPD	62 (15.4%)	36 (18.0%)	26 (12.5%)	0.11

Standard vs. Minimalist TAVR in AMC Procedural Characteristics

	Overall (N = 403)	General Anesthesia (N = 200)	Conscious Sedation (N = 203)	P value
Aortic-valve area, cm ²	0.60 ± 0.17	0.60 ± 0.17	0.60 ± 0.16	0.92
AV Vmax, m/s	5.0 ± 0.8	4.9 ± 0.8	5.0 ± 0.9	0.33
Mean gradient, mmHg	60.8 ± 22.9	59.7 ± 22.6	62.4 ± 23.4	0.29
Bicuspid AV	35 (8.7%)	20 (10.0%)	15 (7.4%)	0.37
LV EF, %	58.3 ± 11.1	58.8 ± 10.8	57.8 ± 11.4	0.45
Device type				0.003
Balloon-expandable	261 (64.8%)	115 (57.5%)	146 (71.9%)	
Self-expandable	142 (35.2%)	85 (42.5%)	57 (28.1%)	

Standard vs. Minimalist TAVR in AMC Procedural Outcomes

	Overall (N = 403)	General Anesthesia (N = 200)	Conscious Sedation (N = 203)	P value
Device success	393 (97.5%)	193 (96.5%)	200 (98.5%)	0.16
Conversion to surgery	6 (1.5%)	5 (2.5%)	1 (0.5%)	0.10
Coronary obstruction	1 (0.2%)	1 (0.5%)	0	0.50
Implantation of two valves	12 (3.0%)	10 (5.0%)	2 (1.0%)	0.02
New permanent pacemaker	34 (8.4%)	20 (10.0%)	14 (6.9%)	0.26
PVL ≥ moderate	25 (6.3%)	20 (10.2%)	5 (2.5%)	0.002
Major vascular complication	19 (4.7%)	17 (8.5%)	2 (1.0%)	<0.001
Length of hospital stay (days)	8.6±13.5	9.7±8.8	7.4±16.8	<0.001

Standard vs. Minimalist TAVR in AMC 30 Days Outcomes

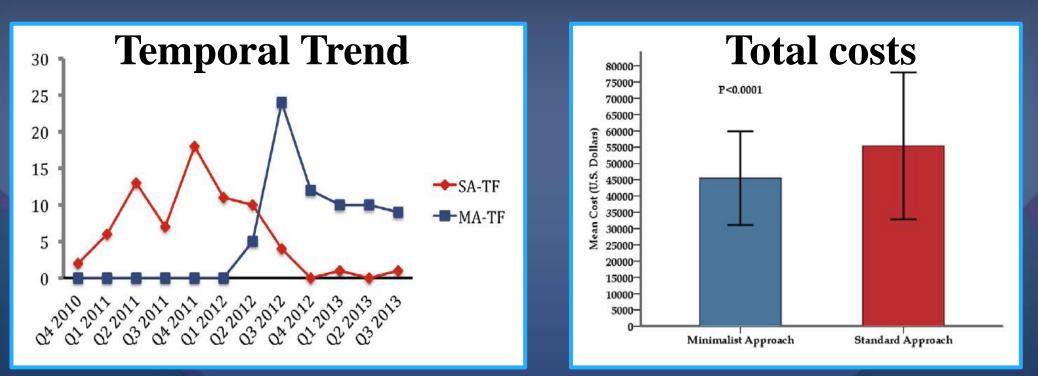
	Overall (N = 403)	General Anesthesia (N = 200)	MAC (N = 203)	P value
Death, all	10 (2.5%)	9 (4.5%)	1 (0.5%)	0.01
Cardiac death	6 (1.5%)	5 (2.5%)	1 (0.5%)	0.10
Non-cardiac death	4 (1.0%)	4 (2.0%)	0	0.043
Stroke, all	13 (3.2%)	11 (5.5%)	2 (1.0%)	0.01
Disabling	6 (1.5%)	4 (2.0%)	2 (1.0%)	0.40
Non-disabling	7 (1.7%)	7 (3.5%)	0	0.07
Death or disabling stroke	15 (3.7%)	12 (6.0%)	3 (1.5%)	0.015
Bleeding	130 (32.3%)	86 (43.0%)	44 (21.7%)	<0.001
Life-threatening	30 (7.4%)	21 (10.5%)	9 (4.4%)	0.02
Major	117 (29.0%)	79 (39.5%)	38 (18.7%)	<0.001

Standard TAVR Defined by VARC

Standard Performance (VARC High-Risk AS patients (@		Asian 2017	AMC 2018	AMC "MAC"	
All-cause mortality <3	3%	2.5%	2.5%	0.5%	
Major (disabling) strokes	< 2%	2.2%	3.2%	1.0%	
Major vascular complications	< 5%	5.0%	4.7%	1.0%	
New permanent pacemakers	< 10%	9.5%	8.4%	6.9%	
Mod-severe PVR	< 5%	9.8%	6.3%	2.5%	

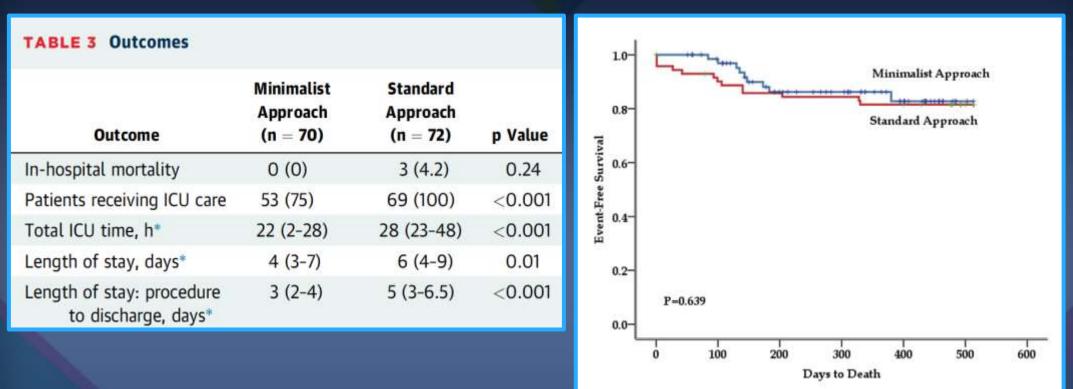
VARC* Vascular Academic Research Consortium

Standard vs. Minimalist TAVR Current Cumulative Evidence



JACC: CARDIOVASCULAR INTERVENTIONS VOL. 7, NO. 8, 2014 AUGUST 2014:898-904 Babaliaros et al. Minimalist and Standard TF TAVR Approach

Comparison of Transfemoral Transcatheter Aortic Valve Replacement Performed in the Catheterization Laboratory (Minimalist Approach) Versus Hybrid Operating Room (Standard Approach)


Outcomes and Cost Analysis

A total of 142 patients: 70 MAC vs. 72 GA at <u>Emory University</u>, USA.

J Am Coll Cardiol Intv 2014;7:898–904.

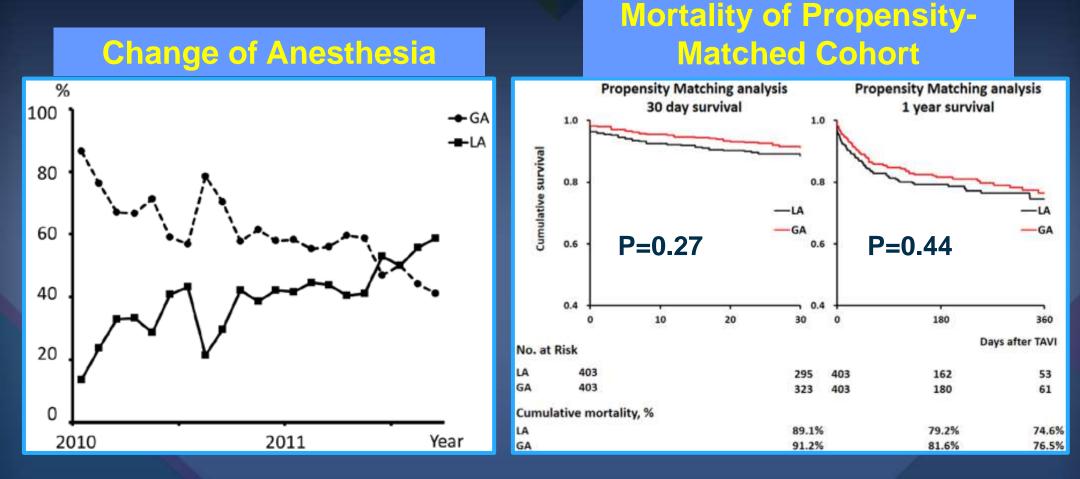
Minimal vs. Standard Approach Outcomes

J Am Coll Cardiol Intv 2014;7:898-904.

Structural Heart Disease

Clinical Outcomes and Safety of Transfemoral Aortic Valve Implantation Under General Versus Local Anesthesia Subanalysis of the French Aortic National CoreValve and Edwards 2 Registry

 Atsushi Oguri, MD; Masanori Yamamoto, MD; Gauthier Mouillet, MD; Martine Gilard, MD; Marc Laskar, MD; Helene Eltchaninoff, MD; Jean Fajadet, MD; Bernard Iung, MD;
 Patrick Donzeau-Gouge, MD; Pascal Leprince, MD; Alain Leguerrier, MD; Alain Prat, MD; Michel Lievre, PhD; Karine Chevreul, MD; Jean-Luc Dubois-Rande, MD;
 Romain Chopard, MD; Eric Van Belle, MD; Toshiaki Otsuka, MD; Emmanuel Teiger, MD; on behalf of FRANCE 2 Registry Investigators


2326 TF-TAVR patients in the FRANCE 2 registry.
All patients: GA (n=1377) and LA (n=949)
Propensity-matched cohort (N=401)

Circ Cardiovasc Interv. 2014;7:602-610

Change of TAVR Pattern and Outcome

TCTAP2018

Circ Cardiovasc Interv. 2014;7:602-610

Contents lists available at ScienceDirect

International Journal of Cardiology

GrosMark

journal homepage: www.elsevier.com/locate/ijcard

Local and general anaesthesia do not influence outcome of transfemoral aortic valve implantation

Gianni Dall'Ara ^{a,1}, Helene Eltchaninoff^{b,2}, Neil Moat ^{a,2}, Cécile Laroche ^{c,2}, Javier Goicolea ^{d,2}, Gian Paolo Ussia ^{e,2}, Petr Kala ¹², Peter Wenaweser ^{g,2}, Marian Zembala ^{h,2}, Georg Nickenig ⁱ², Thomas Snow ¹², Susanna Price ^{a,2}, Eduardo Alegria Barrero ^{h,2}, Rodrigo Estevez-Loureiro ¹², Bernard lung ^{m,2}, José Luis Zamorano ^{n,2}, Gerhard Schuler ^{o,2}, Ottavio Alfieri ^{p,2}, Bernard Prendergast ^{6,2}, Peter Ludman ¹², Stephan Windecker ^{g,2}, Manel Sabate ^{s,2}, Martine Gilard ^{t,2}, Adam Witkowski ^{u,2}, Haim Danenberg ^{v,2}, Erwin Schroeder ^{w,2}, Francesco Romeo ^{e,2}, Carlos Macaya ^{s,2}, Genevieve Derumeaux ^{y,2}, Alessio Mattesini ^{a,2}, Luigi Tavazzi ^{2,2}, Carlo Di Mario ^{a,6,1},

on behalf of the Transcatheter Valve Treatment Sentinel Registry (TCVT) Investigators of the Eurobservational Research Programme (EORP) of the European Society of Cardiology

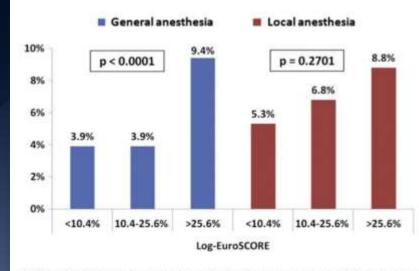
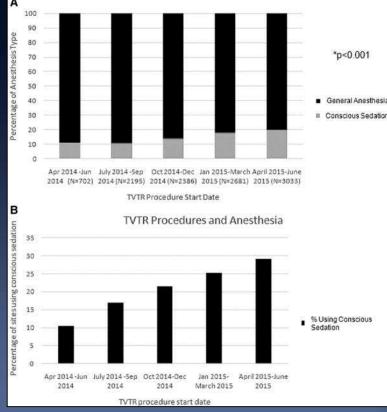


Fig. 3. In-hospital mortality according to anaesthetic management and patients predicted risk. Population divided by tertiles of Log-EuroSCORE (details in "Statistical analysis"). In

<u>European Society of Cardiologist's Transcatheter Valve</u> <u>Treatment (TCVT) Registry</u>

- 2807 patients, divided according to management strategy into the LA/ CS-group (1095 patients, 39%) and the GAgroup (1712 patients, 61%)
- Survival at 1 year, compared by Kaplan-Meier analysis, was similar between groups (log-rank: p=0.1505)
 - In-hospital mortality was higher in the low and intermediate risk groups for LA/CS but higher in the GA group for the highest risk group


Int J Cardiol. 2014;177:448-454

Conscious Sedation Versus General Anesthesia for Transcatheter Aortic Valve Replacement

Insights from the National Cardiovascular Data Registry Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry

When propensity-matched for factors known to predict early TAVR mortality (51 covariates), conscious sedation compared to GA was associated with

- Lower procedural success (97.9% vs. 98.6%, P<0.001)
- Reduced rate of mortality at the in-hospital (1.5% vs. 2.4%, P<0.001) and 30-day (2.3% vs. 4.0%, P<0.001) time points.
- Reductions in procedural inotrope requirement, intensive care unit and hospital length of stay (6.0 vs. 6.5 days, P<0.001),
- Combined 30-day death/ stroke rates (4.8% vs. 6.4%, *P*<0.001).

Hyman MC et al Circulation. 2017;136:2132–2140

Systemic Review and Meta-Analysis Local and General Anesthesia

Open Access

Research

BMJ Open Is local anaesthesia a favourable approach for transcatheter aortic valve implantation? A systematic review and meta-analysis comparing local and general anaesthesia

> Constanze Ehret,¹ Rolf Rossaint,¹ Ann Christina Foldenauer,² Christian Stoppe,¹ Ana Stevanovic,¹ Katharina Dohms,¹ Marc Hein,¹ Gereon Schälte¹

1 RCT and 19 observational studies were included in the review.

Ehret C et al. BMJ Open. 2017;7(9):e016321.

Systemic Review and Meta-Analysis Local and General Anesthesia

100

	LAS	5	G/	\		Risk Ratio	Risk Ratio
Study or Subgroup	Events '	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% C
Attizzani 2015	5	116	4	91	4.1%	0.98 [0.27, 3.55]	
Babaliaros 2014	0	70	4	72	0.8%	0.11 [0.01, 2.08]	
Balanika 2014	2	41	3	57	2.2%	0.93 [0.16, 5.30]	
Bergmann 2011	6	100	5	51	5.3%	0.61 [0.20, 1.91]	
Brecker 2016	13	245	12	245	11.6%	1.08 [0.50, 2.33]	
D'Errigo 2016	12	310	15	310	12.3%	0.80 [0.38, 1.68]	
Dehédin 2011	3	34	6	91	3.9%	1.34 [0.35, 5.05]	
Gauthier 2015	3	66	1	51	1.4%	2.32 [0.25, 21.63]	
Kesimci 2015	10	72	7	79	8.2%	1.57 [0.63, 3.90]	
Kiramijyan 2016	23	467	7	66	10.5%	0.46 [0.21, 1.04]	
Motloch 2012	5	41	3	33	3.7%	1.34 [0.35, 5.21]	
Palermo 2016	1	44	0	21	0.7%	1.47 [0.06, 34.56]	
Petronio 2015	57	961	23	355	31.0%	0.92 [0.57, 1.46]	
Yamamoto 2013	10	130	3	44	4,4%	1.13 [0.33, 3.91]	
Total (95% CI)		2697		1566	100.0%	0.91 [0.70, 1.18]	+
Total events	150		93				

30-Days Mortality "No Difference"

в

5	LA	S	G	۸		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95%	% CI M-H, Random, 95% CI	
Attizzani 2015	5	116	3	91	8.5%	1.31 [0.32, 5.33]	•	
Babaliaros 2014	0	70	3	72	2.4%	0.15 [0.01, 2.79]	· · · · ·	
Dall'Ara 2014	77	1095	.90	1712	31.3%	1.34 [1.00, 1.80]	-	
Dehédin 2011	3	34	7	91	9.6%	1.15 [0.31, 4.18]		
Gauthier 2015	2	66	1	51	3.5%	1.55 [0.14, 16.57]		
Goren 2015	1	129	4	75	2.7%	0.58 [0.04, 9.16]		
Kiramijyan 2016	15	466	7	66	16.2%	0.30 [0.13, 0.72]		
Mayr 2016	1	31	0	31	2.1%	3.00 [0.13, 70.92]		۰.
Petronio 2015	38	961	17	355	23.7%	0.83 [0.47, 1.44]	1 -	
Total (95% CI)		2968		2544	100.0%	0.87 [0.55, 1.40]	•	
Total events	142		129					
Heterogeneity: Tau ³ = 0.	16; Chi2=	13.83,	df = 8 (P =	= 0.09);	P = 42%			10
Test for overall effect: Z	= 0.56 (P	= 0.58)	<u> </u>	85			0.01 0.1 1 10 Favours LAS Favours GA	10

In-Hospital Mortality "No Difference"

Ehret C et al. BMJ Open. 2017;7(9):e016321.

Systemic Review and Meta-Analysis Local and General Anesthesia

10

100

100

10

A	LA	s	G			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Attizzani 2015	20	116	10	- 91	2.4%	1.57 [0.77, 3.18]	
Bahalians 2014	2	.70	4	72	0.4%	6.51 [0.10, 2.72]	•
Bergmann 2011	24	100	11	51	3.1%	1.11 [0.59, 2.09]	-
Brecker 2016	69	245		245	11.1%	1.35 [0.99, 1.86]	
D'Errigo 2016	58	310	45	310	8.9%	1.29 [0.90, 1.84]	
Dall'Ara 2014	1.79	1095	194	1712	25.8%	1.44[1.19, 1.74]	
Dehédin 2011	. 5	34	10	91	1.2%	1.34 [0,49, 3.63]	
Gauthier 2015	10	66	0	- 51	0.2%	16.30 [0.98, 271.75]	
Kesimci 2015	÷ 9.		3	79	0.6%	1.83[0.45,7.38]	
Kinemijyan 2016	45	- 451	2	65	0.6%	3.24 [0.81, 13.05]	
Motloch 2012	4	.41	.3	33	0.6%	5.67 [0.26, 4.46]	
Oguri 2014	124	949	159	1377	20,4%	1.13 [0.91, 1.41]	
Palermo 2016	- 17	44	6	21	2.0%	1.35 [0.62, 2.93]	
Petronio 2015	231	961	80	355	19.9%	1.07 [0.85, 1.33]	
Yamatioto 2013	21	130	10	-44	2.7%	0.71 [0.36, 1.39]	
Total (95% CI)		4684		4597	100.0%	1.24 [1.11, 1.39]	٠
Total events	814		588				
Heterogeneity: Tan ² = 0	00; Chr3-	15.03,	df = 14.0	+ 0.38)	F = 7%	t.	<u>k k i i</u>
Test for overall effect: 2						0.1	0.2 0.5 1 2 Favours LAS Favours GA

New pacemaker insertion "GA Is Better"

в

в							
	LA		G			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Attizzani 2015	1	116	. t.	91	1.0%	0.78 [0.05, 12.37]	
Babaliaros 2014	3	70	0	32	0.9%	7.20 [0.38, 136, 84]	
Bergmann 2011	0	100	1	51	0.8%	0.17 [0.01, 4.14]	
Brecker 2016		245	8	245	8.7%	1.13[0.44, 2.87]	-
D'Errigo 2016	4	310	2	310	2.7%	2.00 [0.37, 10.84]	1111
Dull'Am 2014	15	1095	26	1712	19.1%	0.90 [0.48, 1.70]	
Dehédin 2011	11	34	4	91	1.6%	0.67[0.08, 5.78]	
Gauthier 2015	2	66	2	51	2.1%	0.77[0.11, 5.30]	
Goran 2015	2	129	1	-75	1.3%	1.16 [0.11, 12.61]	-
Kimmiryan 2016	10	456	- 4	65	7.0%	0.68 [0.24, 1.93]	
Mager 2016	1	31	0	31	0.8%	3.00 [0.13, 70.92]	-
Motioch 2012	1	41	1	33	1.0%	0.80 [0.05, 12.39]	
Oguri 2014	34	949	45	1377	39.8%	1.10 [0.71, 1.70]	-
Palermo 2016	1	44	0	21	0.8%	1.47 (0.06, 34.56)	
Petronio 2015	23	.961	4	355	6.8%	2.12 [0.74, 6.10]	+
Vamanioto 2013		130	4	44	5.8%	0.68 [0.21, 2.14]	
Total (95% CI)		4777		4624	100.0%	1.05 [0.80, 1.38]	•
Total events	124		103				
Heterogeneity: Tau! = 0 Test for overall effect: 2				= 0.94);	$E_1 = 0.4\%$	aai	0.1 10 Favours LAS Favours GA
с							2002
Ph	LA		G			Risk Ratio	Risk Ratio
	and the second second second		Events			M-H, Random, 95% CI	M-H, Random, 95% Cl
Covello 2010	.0	42	1	27	10.5%		
Gorum 2015	0	129		75	68,7%		
Palermo 2016	0	44	1	21	14.9%	0.16 [0.01, 3.84]	
Tatal (95% CI)		215		123	100,0%	0.31 [0.09, 1.04]	-
Total events	3		7				1.

Heterogeneity: Tan⁴ = 0.60; Chi² = 0.70, df = 2 (P = 0.71); P = 0% Test for overall effect; Z = 1.89 (P = 0.06)

Stroke "No Difference"

Pneumonia "LAS Is Better"

0.1

Finoun LAS Favours GA

0.01

Advantages of GA and TEE on TAVR Procedures

- Controlled, "emotionally peaceful" setting
- TEE imaging
 - Anticipate problems
 - Identify immediate complications
 - PVL assessment
 - Causes of hypotension
 - Annular rupture
 - Pericardial effusion
 - Coronary obstruction
 - Mitral regurgitation
 - RV dysfunction

A "Selective" Minimalist Strategy Makes More Sense : Optimal Case Selection Based on High-Risk Anatomy and Clinical Characteristics

MAC vs. GA for TAVR

MAC Preferred

- High quality CTA demonstrates appropriate lower risk anatomy
- Significant RV/LV dysfunction
- Contraindications to TEE
- Poor respiratory function or high risk for intubation

GA Preferred

- High risk anatomy, grey zone sizing or lack of preoperative CTA
- Decompensated heart failure
- Impaired cognitive state with inability to cooperate

What Are Key Milestones Starting a Minimalist TAVR?

Patient selection is critical.

- Sophisticated understanding of TAVR sizing (multi-modality imaging)
- Understanding of TAVR risks and their management
- Experienced heart team experienced anesthesiologists and interventionists are KEY.
- Straightforward procedural approach and increased experience and expertise.

Summary: Minimalist TAVR

- An international trend toward minimalist TAVR.
 - appears as safe as conventional strategy
- Minimalist TAVR if done appropriately can provide clinical and economic benefits

When an TAVR center decides to transition from GA to MAC;

- Careful patient selection, meticulous procedural technique and dedicated post-procedural care are keys to success
- As centers gain experience, there will be a trend toward more minimalist procedures
- Acute procedural success and clinical outcomes should not be jeopardized.

