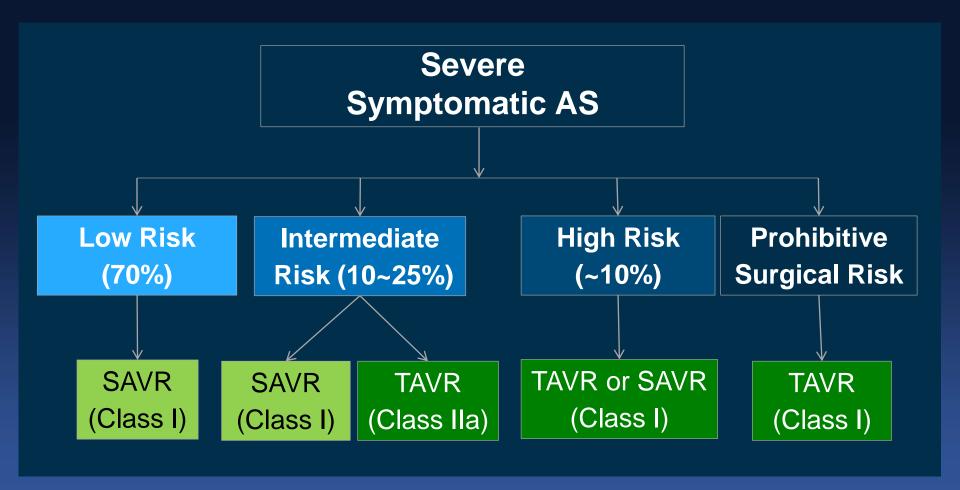
TAVR in Asia, Korea and Asan Medical Center

Seung-Jung Park, MD, PhD

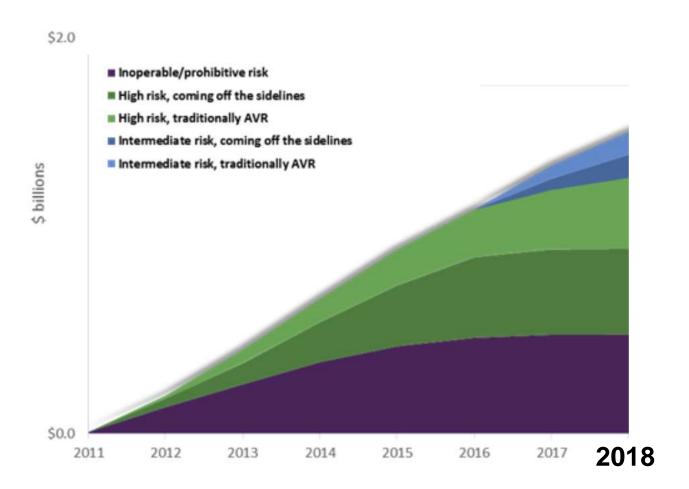
Professor of Medicine, University of Ulsan College of Medicine, Heart Institute, Asan Medical Center, Seoul, Korea

Current Status of TAVR

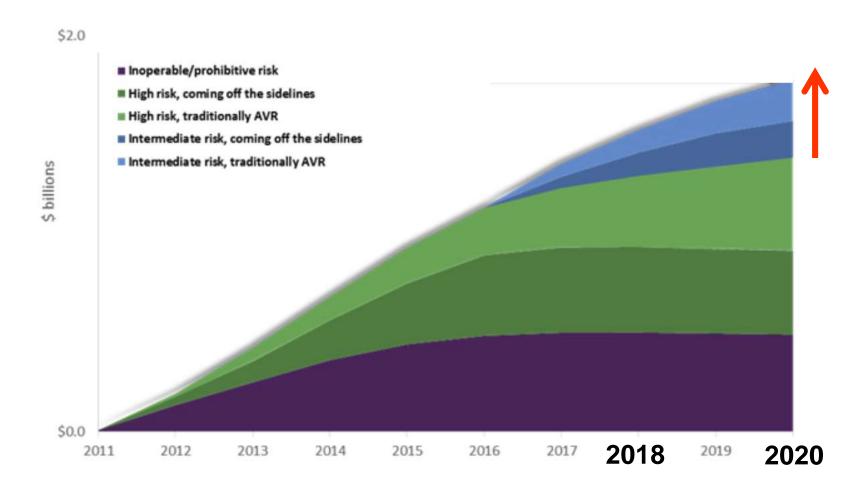

Functional Classification of Severe AS Patients

Inoperable, Prohibitive Surgical Risk

High Risk > 8%
Intermediate Risk 4-8 %
Low Risk < 4%



2017 AHA/ACC Guideline Focused Update



TAVR in US

TAVR in US

We Have A Choice!

Sapien 3 **Evolut** R Symetis Lotus **Portico** Direct Flow Engager Jena Valve Centera Venus A Valve Shanghai Valve **Trinity**

Colibri Inovare Thubrikar Valve Medical Syntheon Verso Triskele **BioValve** MyVal HLT NVT (Nautilus) J - Valve Xeltis Zurich TEHV

Current Active Evolving Device

Sapien 3

Evolut R

Outcomes of TAVR

Standard Performance (VARC-2*) for High-Risk AS patients (@ 30 days)

All-cause mortality	< 3%
7 til Gaaco Illoitality	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

TAVR in Asian What is the Difference?

The Asian TAVR Registry

Sponsored Investigator; Park Seung-Jung, MD Collaboration with CVRF, Clinical Trials.gov: NCT02308150

5 Countries, 11 centers

HongKong Queen Elizabeth Hospital

Singapore National University Heart Centre

Taiwan National Taiwan University

Cheng-Hsin Hospital

Korea Seoul National University Hospital

Asan Medical Center

Japan Shonan Kamakura General Hospital

Keio University Hospital

Teikyo University Hospital

Saiseikai Yokohama Eastern Hospital

Kokura Memorial Hospital

Asian vs Caucasian Comparison of Aortic Annulus

	Asian	Caucasian	
	N=202	N=106	P value
Annulus Area, mm²	406 ±70	430 ± 77	0.007
Annulus Perimeter, mm	73 ± 6	75 ± 7	0.008
Mean Diameter, mm	23 ± 2	24 ± 2	0.009
LCA height, mm	12 ± 3	13 ± 3	< 0.001
RCA height, mm	17 ± 3	17 ± 4	0.82

Small aortic annulus, Small vascular access, Higher Prevalence of Bicuspid Aortic Valve (?)

Baseline Characteristics (n=848)

	N=848
Age	81.8 ± 6.6
Female	53.3%
STS score	5.2 ± 3.8
BMI, kg/m ²	23.0 ± 3.8
Diabetes mellitus	30.1%
NYHA class III/IV	63.0%
CAD	44.7%
Previous stroke	10.5%
Peripheral vascular disease	15.4%
COPD	11.7%
Sapien	549(65%)
CoreValve	299(35%)

Procedural Outcomes

	N=848
Access site	
Transfemoral	86.2%
Transapical	12.6%
Transsubclavian,Tranaortic	0.4%, 0.8%
Procedural success	97.5%
Conversion to surgery	1.8%
Coronary obstruction	1.3%
Implantation of two valves	4.5%
New permanent pacemaker	9.5%
Paravalvular leakage (PVL) ≥ moderate to severe	9.8%

30 days Outcomes

Mortality	
Any cause	2.5%
Cardiovascular cause	1.7%
Stroke	
All	3.8%
Disabling	2.2%
Bleeding	10.9%
Life-threatening	6.4%
Major	4.5%
Vascular complications	9.7%
Major	5.0%
Minor	4.7%

Outcomes of TAVR

Standard Performance (VARC-2*) for High-Risk AS patients (@ 30 days)

Asian 2017

- All-cause mortality
 - Major (disabling) strokes < 2%
- Major vascular complications < 5%
- New permanent pacemakers < 10%
- Mod-severe PVR< 5%

2.5%

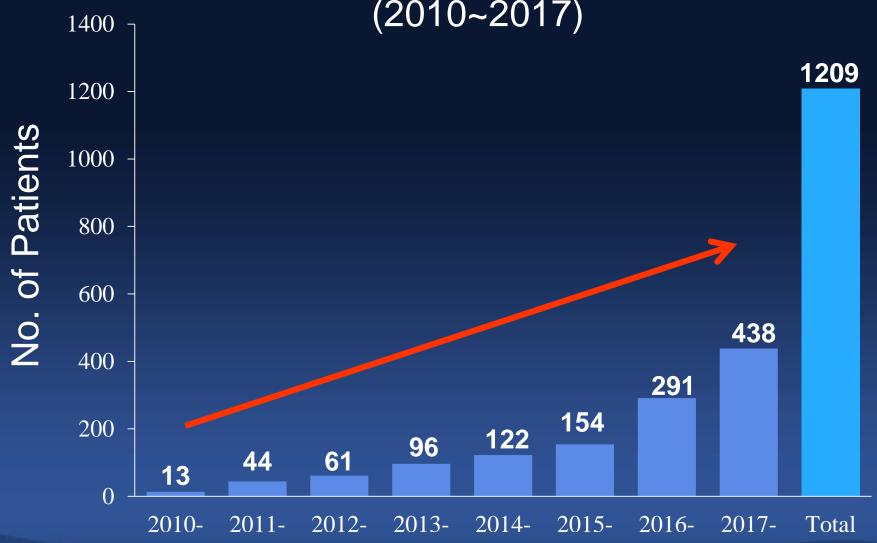
< 3%

2.2%

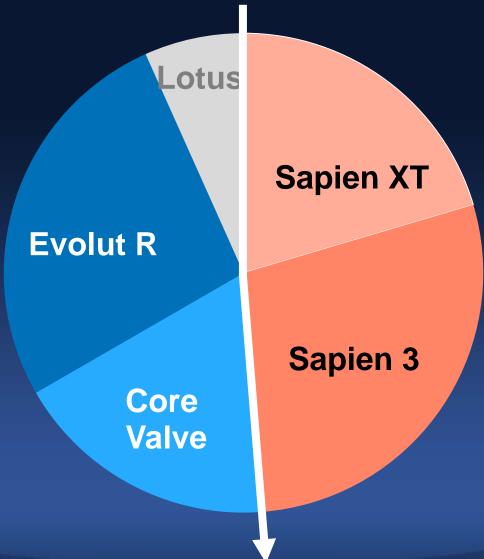
5.0%

9.5%

9.8%



TAVR in Korea What is the Difference?


TAVR in Korea

(2010~2017)

Device

Baseline Characteristics (n=623)

	N=623
Age (Years)	78.6±6.3
Female	51.6 %
STS score	7.83± 8.86
DM	34.6 %
HTN	77.1 %
Stroke or TIA	15.3 %
PAOD	12.7 %
CKD on dialysis	6.4 %
Hospitalization period (Days)	12.1±7.5
TAVR to discharge (Days)	7.8±6.2

Procedural Characteristics

	N=623
Approach	
Femoral	614 (97.8%)
Apical	11 (1.8%)
Subclavian	3 (0.5%)
Operation room	
Hybrid room	358 (57.0%)
Cath room	270 (43.0%)
Anesthesia duration (mins)	131.5±43.2
General anesthesia	533 (84.9%)
Conscious sedation	95 (15.1%)

30 days Outcomes

Device Success	625/627 (99.7%)
PVL, moderate to severe	5.4%
Permanent Pacemaker Rate	5.3%
Stroke, all	1.4%
Bleeding	11.5%
Aortic dissection	1.7%
Aortic rupture	0.2%
Death, all	4.5%
Stoke, all	1.4%

Outcomes of TAVR

< 3%

< 2%

< 5%

Standard Perfori	mance (\	/ARC-2*) for
High-Risk AS	patients	(@ 30 d	ays)

- All-cause mortality
- Major (disabling) strokes
- Major vascular complications < 5%
- New permanent pacemakers < 10%
- Mod-severe PVR

Asian 2017

2.5%

2.2%

5.0%

9.5%

9.8%

Korea 2017

4.5%

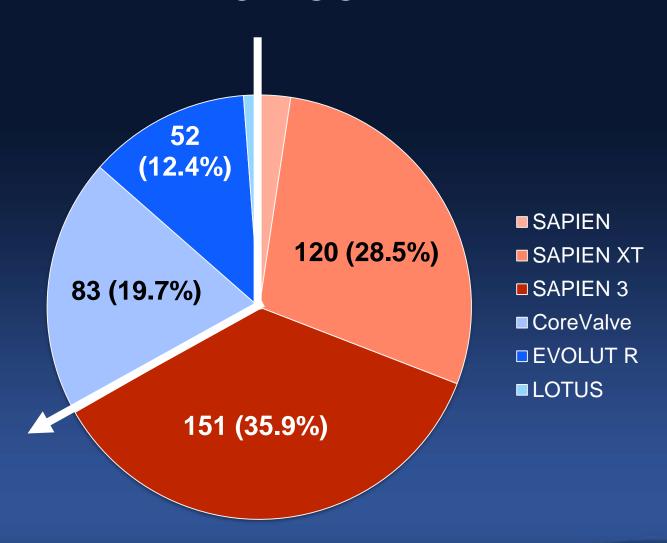
1.4%

6.8%

5.3%

5.4%

What is the Difference? TAVR in AMC (n=485 pts)



TAVR in AMC

	N = 421
Age, years	78.7 ± 5.2
Male sex	202 (48.0%)
BMI, kg/m ²	23.9 ± 3.4
Logistic Euroscore (%)	15.6 ± 12.2
STS risk score (%)	4.3 ± 4.4
DM	59 (14.0%)
Hypertension	358 (85.0%)
Atrial fibrillation	59 (14.0%)
Coronary artery disease	153 (36.3%)
Previous MI	22 (5.2%)
Previous stroke	42 (10.0%)
Peripheral vascular disease	22 (5.2%)
Chronic Kidney Disease	125 (29.7%)
COPD	64 (15.2%)
LV Ejection fraction, %	58.5 ± 10.9

Device

Procedural Outcomes TAVR in AMC

	Overall (N = 403)
Device success	393 (97.5%)
Conversion to surgery	6 (1.5%)
Coronary obstruction	1 (0.2%)
Implantation of two valves	12 (3.0%)
New permanent pacemaker	34 (8.4%)
PVL ≥ moderate	25 (6.3%)
Major vascular complication	19 (4.7%)
Length of hospital stay (days)	8.6±13.5

Incidence of PPM TAVR in AMC

30 Days Outcomes TAVR in AMC

	Overall (N = 403)
Death, all	10 (2.5%)
Cardiac death	6 (1.5%)
Non-cardiac death	4 (1.0%)
Stroke, all	13 (3.2%)
Disabling	6 (1.5%)
Non-disabling	7 (1.7%)
Death or disabling stroke	15 (3.7%)
Bleeding	130 (32.3%)
Life-threatening	30 (7.4%)
Major	117 (29.0%)

Outcomes of TAVR

< 3%

< 2%

< 5%

Standard Performance	(VARC-2*) for
High-Risk AS patients	s (@ 30 days)

- All-cause mortality
- Major (disabling) strokes
- Major vascular complications < 5%
- New permanent pacemakers < 10%
- Mod-severe PVR

Asian 2017

2.5%

2.2%

5.0%

9.5%

9.8%

AMC 2018

2.5%

1.3%

4.8%

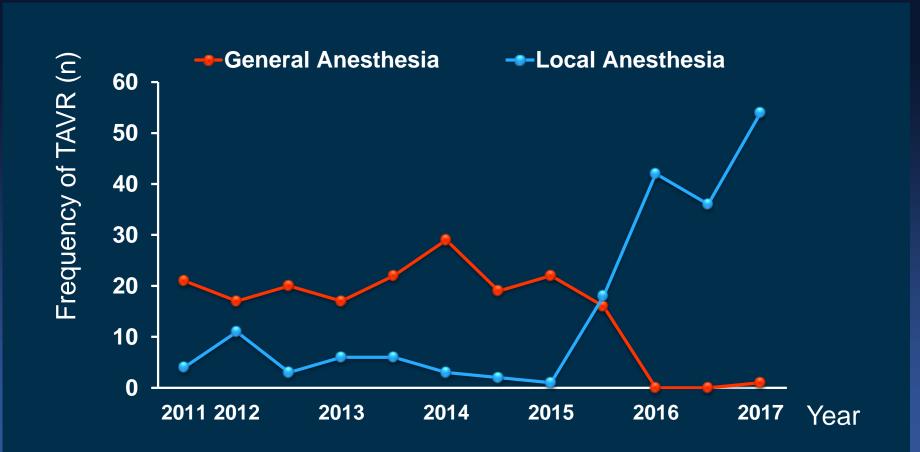
8.6%

5.6%

What is the Difference? TAVR in AMC

- 1. "Heart Team" Perfect Collaboration
- 2. Contemporary "Minimalist Approach" Simplify the Procedure
- 3. "CT Algorithm for Device Selection"

 Pre-TAVR Meticulous CT Measurement



"Minimalist Approach" TAVR in AMC

- No General Anesthesia,
- No TEE
- No Complications
- 30 min. Procedure
- One Day stay in CCU
- Discharge on Day #3
- Cardiac Rehabilitation Program

"Minimalist Approach" TAVR in AMC

TAVR in AMC Baseline Characteristics

	Overall (N = 403)	General Anesthesia (N = 200)	Conscious Sedation (N = 203)	P value
Age	78.8 ± 5.0	77.9 ± 5.3	79.7 ± 4.6	0.001
Male sex	189 (46.9%)	99 (49.5%)	90 (44.3%)	0.30
BMI, kg/m ²	24.0 ± 3.3	24.1 ± 3.2	23.8 ± 3.4	0.41
STS risk score, %	4.1 ± 3.2	4.2 ± 3.8	4.0 ± 2.5	0.57
DM	128 (31.8%)	67 (33.5%)	61 (30.0%)	0.39
HTN	339 (84.1%)	168 (84.0%)	171 (84.2%)	0.94
Atrial fibrillation	57 (14.1%)	28 (14.0%)	29 (14.3%)	0.92
CAD	143 (35.5%)	78 (39.0%)	65 (32.0%)	0.11
Previous MI	19 (4.7%)	6 (3.0%)	13 (6.4%)	0.12
Previous stroke	39 (9.7%)	16(8.0%)	23 (11.3%)	0.22
PVD	21 (5.2%)	13 (6.5%)	8 (3.9%)	0.31
CKD	114 (28.3%)	61 (30.5%)	53 (26.1%)	0.29
COPD	62 (15.4%)	36 (18.0%)	26 (12.5%)	0.11

Cardio Vascular Research Foundation

TAVR in AMC Procedural Characteristics

	Overall (N = 403)	General Anesthesia (N = 200)	Conscious Sedation (N = 203)	P value
Aortic-valve area, cm ²	0.60 ± 0.17	0.60 ± 0.17	0.60 ± 0.16	0.92
AV Vmax, m/s	5.0 ± 0.8	4.9 ± 0.8	5.0 ± 0.9	0.33
Mean gradient, mmHg	60.8 ± 22.9	59.7 ± 22.6	62.4 ± 23.4	0.29
Bicuspid AV	35 (8.7%)	20 (10.0%)	15 (7.4%)	0.37
LV EF, %	58.3 ± 11.1	58.8 ± 10.8	57.8 ± 11.4	0.45
Device type				0.003
Balloon-expandable	261 (64.8%)	115 (57.5%)	146 (71.9%)	
Self-expandable	142 (35.2%)	85 (42.5%)	57 (28.1%)	

TAVR in AMC Procedural Outcomes

	Overall (N = 403)	General Anesthesia (N = 200)	Conscious Sedation (N = 203)	P value
Device success	393 (97.5%)	193 (96.5%)	200 (98.5%)	0.16
Conversion to surgery	6 (1.5%)	5 (2.5%)	1 (0.5%)	0.10
Coronary obstruction	1 (0.2%)	1 (0.5%)	0	0.50
Implantation of two valves	12 (3.0%)	10 (5.0%)	2 (1.0%)	0.02
New permanent pacemaker	34 (8.4%)	20 (10.0%)	14 (6.9%)	0.26
PVL ≥ moderate	25 (6.3%)	20 (10.2%)	5 (2.5%)	0.002
Major vascular complication	19 (4.7%)	17 (8.5%)	2 (1.0%)	<0.001
Length of hospital stay (days)	8.6±13.5	9.7±8.8	7.4±16.8	<0.001

TAVR in AMC 30 Days Outcomes

	Overall (N = 403)	General Anesthesia (N = 200)	MAC (N = 203)	P value
Death, all	10 (2.5%)	9 (4.5%)	1 (0.5%)	0.01
Cardiac death	6 (1.5%)	5 (2.5%)	1 (0.5%)	0.10
Non-cardiac death	4 (1.0%)	4 (2.0%)	0	0.043
Stroke, all	13 (3.2%)	11 (5.5%)	2 (1.0%)	0.01
Disabling	6 (1.5%)	4 (2.0%)	2 (1.0%)	0.40
Non-disabling	7 (1.7%)	7 (3.5%)	0	0.07
Death or disabling stroke	15 (3.7%)	12 (6.0%)	3 (1.5%)	0.015
Bleeding	130 (32.3%)	86 (43.0%)	44 (21.7%)	<0.001
Life-threatening	30 (7.4%)	21 (10.5%)	9 (4.4%)	0.02
Major	117 (29.0%)	79 (39.5%)	38 (18.7%)	<0.001

Outcomes of TAVR

Standard Performance (VAR) High-Risk AS patients (@ 3	Asian 2017	AMC 2018	AMC "MAC"	
All-cause mortality	< 3%	2.5%	2.5%	0.5%
Major (disabling) strokes	< 2%	2.2%	1.3%	1.0%
Major vascular complications	< 5%	5.0%	4.8%	1.0%
New permanent pacemakers	< 10%	9.5%	8.6%	6.9%
Mod-severe PVR	< 5%	9.8%	5.6%	2.5%

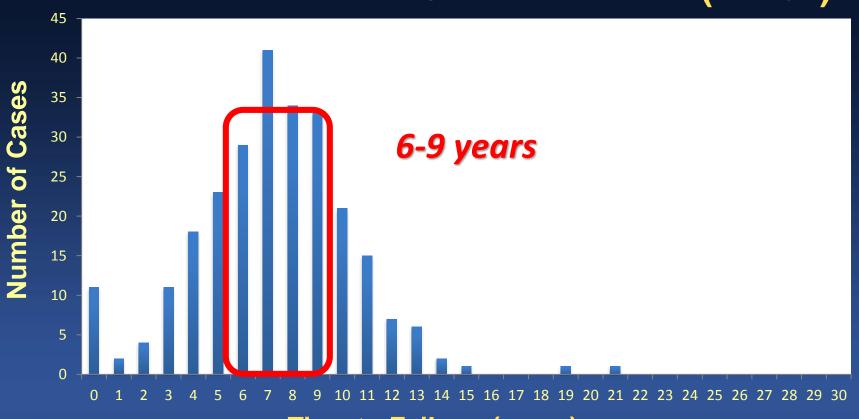
Remaining Issues of TAVR

Durability

Bioprosthetic Surgical Valve Failure

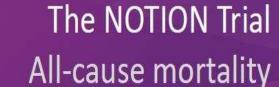
Time to Failure - All (n = 1304)

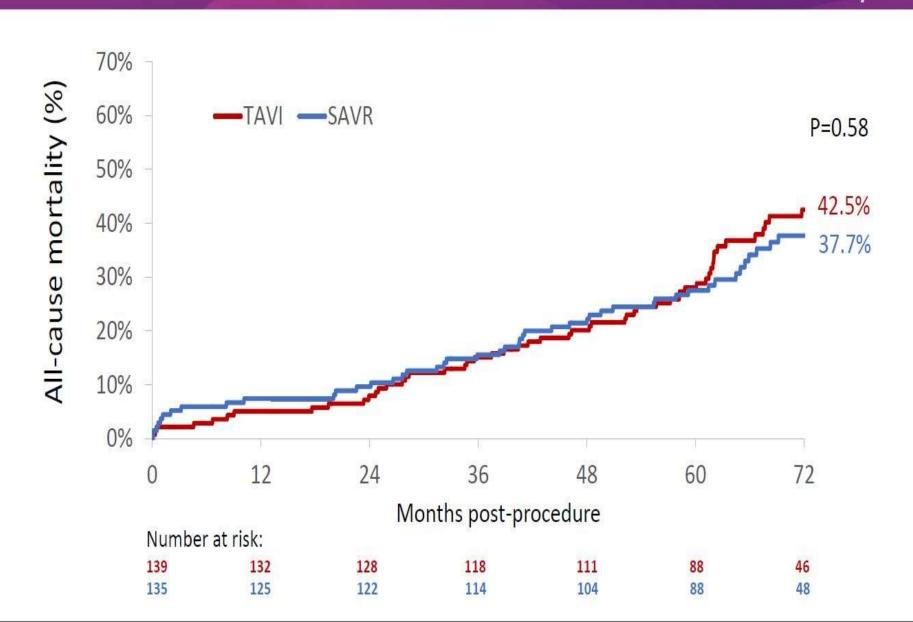
Time to Failure (years)



Bioprosthetic Surgical Valve Failure

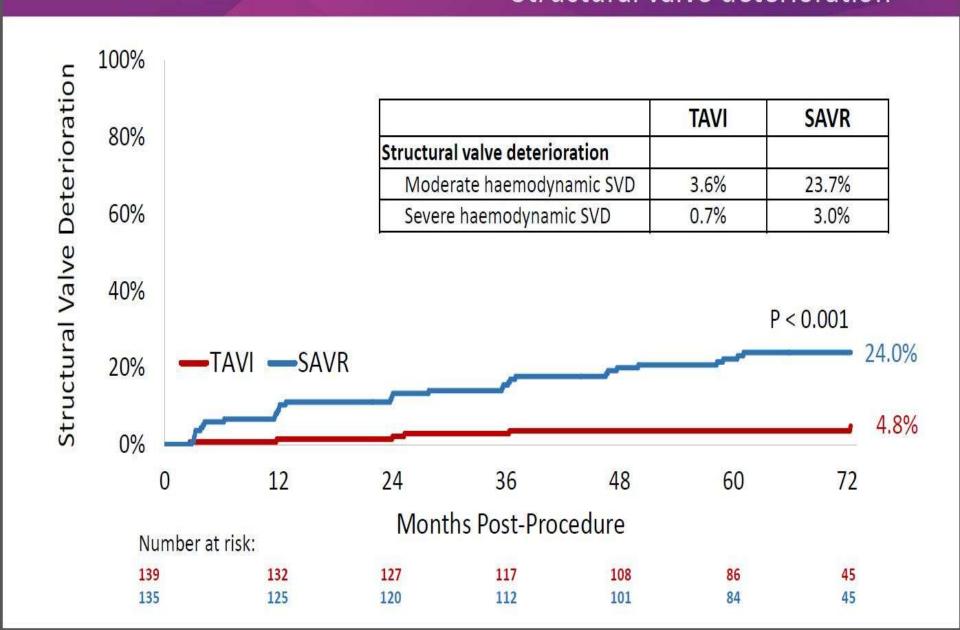
Time to Failure – Sorin Mitroflow (n=261)

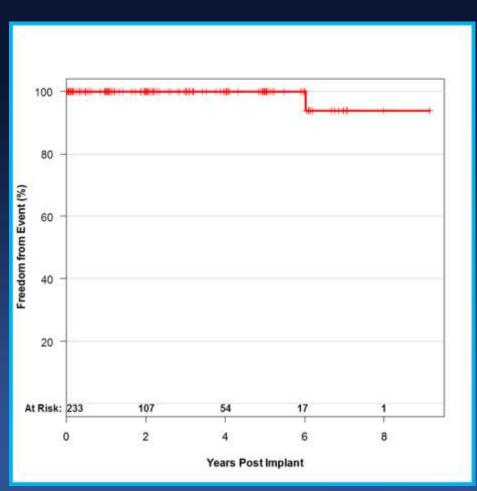

Time to Failure (years)



NEWS • INTERVENTIONAL EUROPCR 2018

NOTION: TAVR in Low-Risk Patients Maintains Its Momentum Through 6 Years

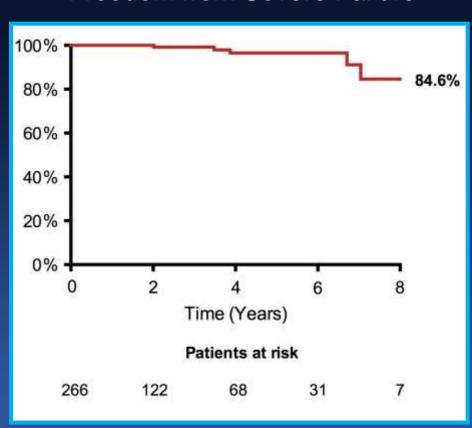


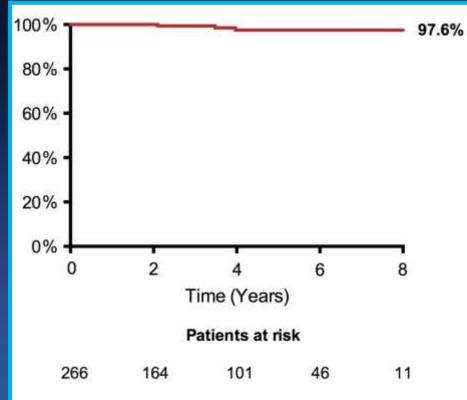


The NOTION Trial Structural valve deterioration

TAVR in CHU Rouen 239 pts from 2002-2011 (> 5 years FU)

Freedom from
either reoperation, or
pressure gradient >40
mmHg or severe AR


8 Years FU

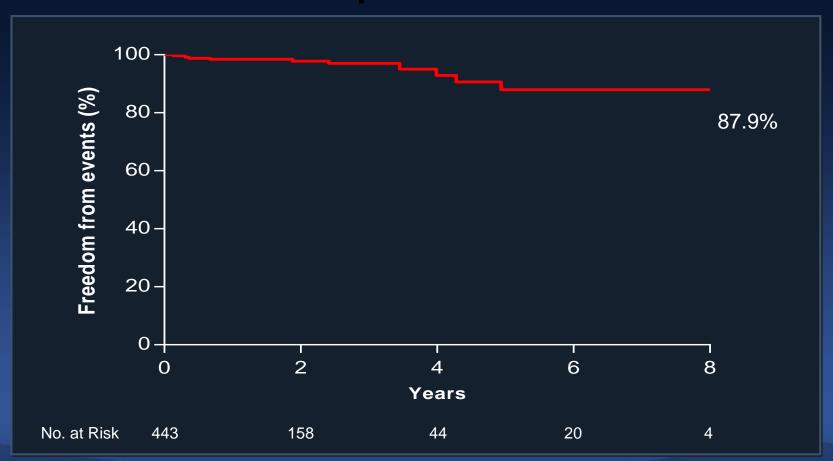


TAVR in Vancouver 266 pts from 2011 (> 5 years FU)

Freedom from Severe Failure

Freedom from Reintervention

7 Years



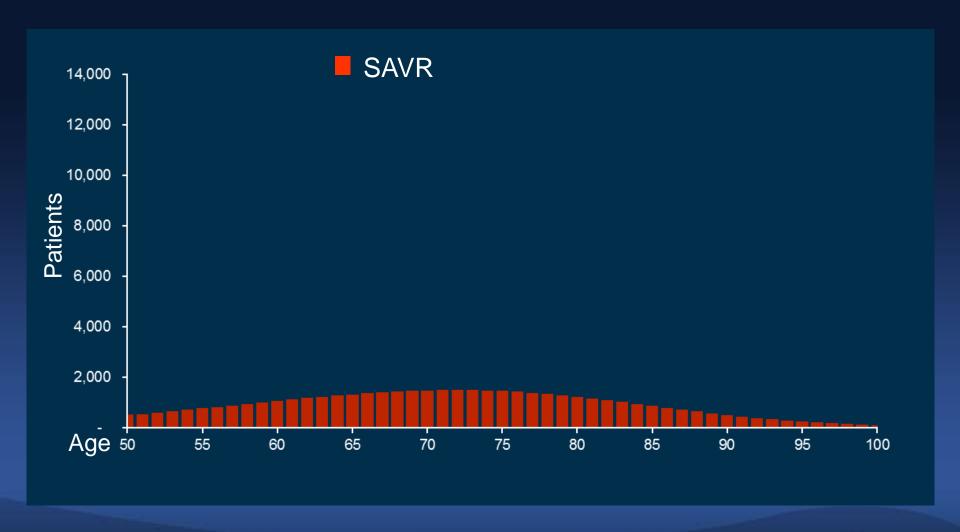
TAVR in AMC 443 pts from 2010 (> 5 years FU)

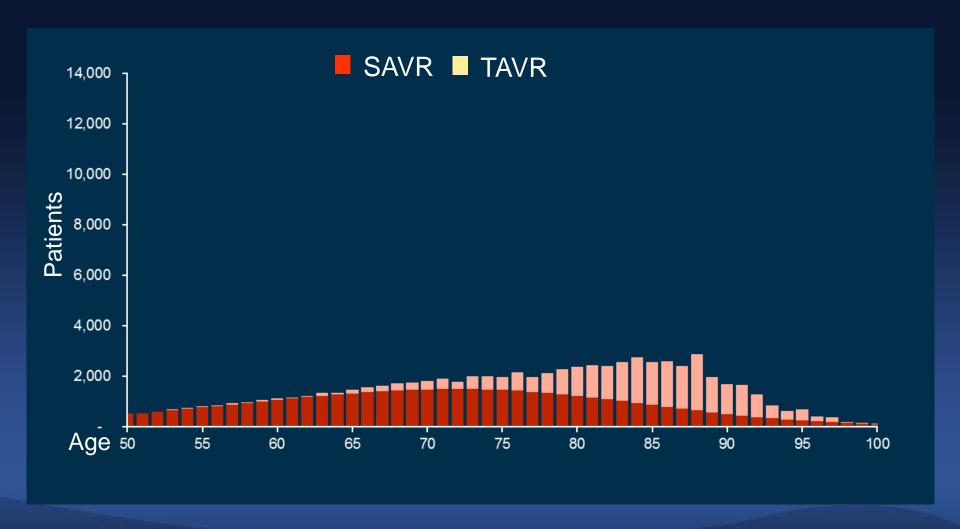

Freedom from Re-operation or Re-intervention

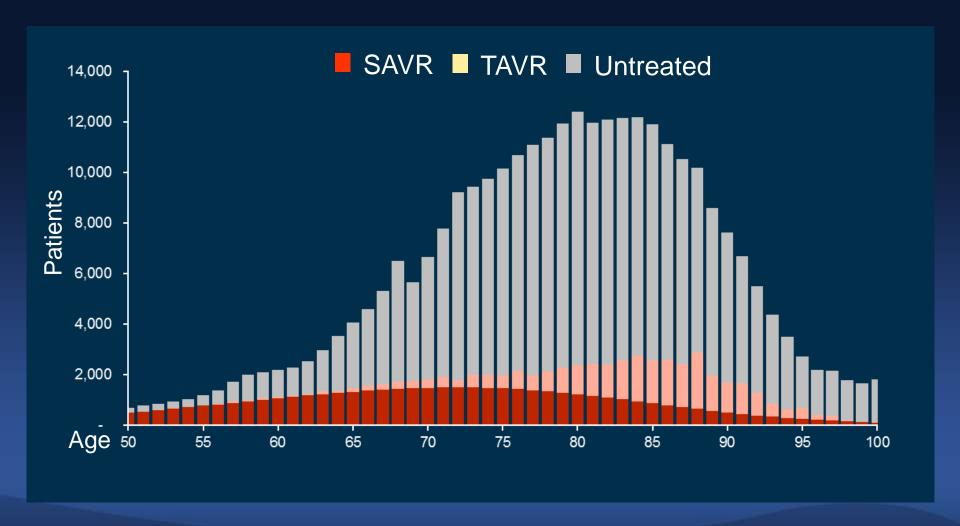
TAVR in AMC 443 pts from 2010 (> 5 years FU)

8 Year Survival

Durability Issue of TAVR


We Need more Data. So far, So Good!


Future Perspective of TAVR


Surgical AVR (SAVR) Severe Symptomatic AS Patients in the U.S.

SAVR + TAVR Severe Symptomatic AS Patients in the U.S.

SAVR + TAVR + Untreated AS Severe Symptomatic AS Patients in the U.S.

Expanding Clinical Indications Of TAVR

- Bicuspid AV disease
- Bioprosthetic valve failure (aortic and mitral)
- Low-risk patients (all-comers)
- Severe asymptomatic AS
- Low-flow, low-gradient AS
- Moderate AS + CHF
- High-risk AR

TAVR in 2025

Evolving TAVI 2025 - TAVR Would be mainstream therapy for almost all aortic stenosis patients. SAVR should be considered only for patients who are not suitable for TAVR.

Thank You!!

summitMD.com