Imaging for Complex PCI Optimize Your Stent: A to Z of Imaging Guidance for PCI

Takashi Akasaka, MD, PhD, FESC, FAPSC, FJCS Department of Cardiovascular Medicine Wakayama Medical University, Japan

> Complex PCI; Make it Simple 2019 Seoul 2019.11.28.

Disclosure Statement of Financial Interest Takashi Akasaka, MD, PhD

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

- Grant/Research Support : Abbott Vascular Japan Boston Scientific Japan Nipro Inc. Terumo Inc.
- Consulting Fees/Honoraria : Abbott Vascular Japan Daiichi-Sankyo Pharmaceutical Inc. Nipro Inc. Terumo Inc.

IVUS- vs. angio-guided PCI with DES

In the assessment of dual antiplatelet therapy with drug-eluting stent (ADAPT-DES) substudy, IVUS guidance compared with angiography in 8,583 'all-comers' pts at 11 international centers.

Conclusion: Compared with angiography, IVUS guidance reduces ST in addition to MI and MACE within 1 year after DES implantation.

Witzenbichler B et al. Circulation 2014;129:463-470.

How IVUS changed the procedure in ADAPT-DES substudy

Witzenbichler B et al. Circulation 2014;129:463-470.

Optimal vs Suboptimal IVUS-guided PCI (ULTIMATE trial)

PCI results

TVF at 12 months

Zhang J, et al. J Am Coll Cardiol 2018;DOI:10.1016/j.jacc2018.09.013

Angiography Alone Versus Angiography Plus Optical Coherence Tomography to Guide Percutaneous Coronary Intervention

Outcomes From the Pan-London PCI Cohort

Daniel A. Jones, MD, PHD,^a Krishnaraj S. Rathod, MD,^a Sudheer Koganti, MD,^a Stephen Zoe Astroulakis, MD, PHD,^c Pitt Lim, MD,^c Alexander Sirker, MD, PHD,^a Constantinos O' Ajay K. Jain, MD,^a Charles J. Knight, MD,^a Miles C. Dalby, MD,^d Iqbal S. Malik, MBBS, F Anthony Mathur, MD, PHD,^a Roby Rakhit, MD,^c Tim Lockie, MBCHB, PHD,^c Simon Redw Philip A. MacCarthy, MBCHB, PHD,^g Ranil Desilva, MD, PHD,^d Roshan Weerackody, MD, Andrew Wragg, MD, PHD,^a Elliot J. Smith, MD,^a Christos V. Bourantas, MD, PHD^a

Kaplan-Meier Curve Comparing All-Cause Mortality Among OCT-, IVUS- and Angio-guided PCI

Wakayama Medical University

25

Jones DA, et al., J Am Coll Cardiol Intv 201811:1313-1321

European Heart Journal (2017) 0, 1–9 doi:10.1093/eurheartj/ehx351

CLINICAL RESEARCH

Interventional cardiology

Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results

Takashi Kubo¹, Toshiro Shinke², Takayuki Okamura³, Kiyoshi Hibi⁴, Gaku Nakazawa⁵, Yoshihiro Morino⁶, Junya Shite⁷, Tetsuya Fusazaki⁶, Hiromasa Otake², Ken Kozuma⁸, Tetsuya Ioji⁹, Hideaki Kaneda⁹, Takeshi Serikawa¹⁰, Toru Kataoka¹¹, Hisayuki Okada¹², and Takashi Akasaka¹*; on behalf of the OPINION Investigators[†]

ased, high-resolution intravascular imaging l imaging technique for guiding percutaneriority of OFDI-guided PCI compared with

 trolled, non-inferiority study to compare generation drug-eluting stent. The primary
death, target-vessel related myocardial

infarction, and ischaemia-driven target vessel revascularization until 12 months after the PCI. The major secondary endpoint was angiographic binary restenosis at 8 months. We randomly allocated 829 patients to receive OFDI-guided PCI (n = 414) or IVUS-guided PCI (n = 415). Target vessel failure occurred in 21 (5.2%) of 401 patients undergoing OFDI-guided PCI, and 19 (4.9%) of 390 patients undergoing IVUS-guided PCI, demonstrating non-inferiority of OFDI-guided PCI to IVUS-guided PCI (hazard ratio 1.07, upper limit of one-sided 95% confidence interval 1.80; $P_{non-inferiority} = 0.042$). With 89.8% angiographic follow-up, the rate of binary restenosis was comparable between OFDI-guided PCI and IVUS-guided PCI (in-stent: 1.6% vs. 1.6%, P = 1.00; and in-segment: 6.2% vs. 6.0%, P = 1.00).

Conclusion The 12-month clinical outcome in patients undergoing OFDI-guided PCI was non-inferior to that of patients undergoing IVUS-guided PCI. Both OFDI-guided and IVUS-guided PCI yielded excellent angiographic and clinical results, with very low rates of 8-month angiographic binary restenosis and 12-month target vessel failure.

Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised Summary controlled trial

Published Online October 30, 2016

http://dx.doi.org/10.1016/

Ziad A Ali, Akiko Maehara, Philippe Généreux, Richard A Shlofmi Fernando Alfonso, Habib Samady, Takashi Akasaka, Eric B Carls Ori Ben-Yehuda, Gregg W Stone, for the ILUMIEN III: OPTIMIZE P

Background Percutaneous coronary intervention (PCI) is most commonly guided by angiography alone. Intravascular ultrasound (IVUS) guidance has been shown to reduce major adverse cardiovascular events (MACE) after PCI, principally by resulting in a larger postprocedure lumen than with angiographic guidance. Optical coherence tomography (OCT) provides higher resolution imaging than does IVUS, although findings from some studies suggest that it might lead to smaller luminal diameters after stent implantation. We sought to establish whether or not a novel OCT-based stent sizing strategy would result in a minimum stent area similar to or better than that achieved with IVUS guidance and better than that achieved with angiography guidance alone.

Methods In this randomised controlled trial, we recruited patients aged 18 years or older undergoing PCI from 29 hospitals in eight countries. Eligible patients had one or more target lesions located in a native coronary artery with a visually estimated reference vessel diameter of 2-25-3-50 mm and a length of less than 40 mm. We excluded patients with left main or ostial right coronary artery stenoses, bypass graft stenoses, chronic total occlusions, planned two-stent bifurcations, and in-stent restenosis. Participants were randomly assigned (1:1:1; with use of an interactive web-based system in block sizes of three, stratified by site) to OCT guidance, IVUS guidance, or angiography-guided stent implantation. We did OCT-guided PCI using a specific protocol to establish stent length, diameter, and expansion according to reference segment external elastic lamina measurements. All patients underwent final OCT imaging (operators in the IVUS and angiography groups were masked to the OCT images). The primary efficacy endpoint was post-PCI minimum stent area, measured by OCT at a masked independent core laboratory at completion of enrolment, in all randomly allocated participants who had primary outcome data. The primary safety endpoint was procedural MACE. We tested non-inferiority of OCT guidance to IVUS guidance (with a non-inferiority margin of 1.0 mm²), superiority of OCT guidance to angiography guidance, and superiority of OCT guidance to IVUS guidance, in a hierarchical manner. This trial is registered with ClinicalTrials.gov, number NCT02471586.

Findings Between May 13, 2015, and April 5, 2016, we randomly allocated 450 patients (158 [35%] to OCT, 146 [32%] to IVUS, and 146 [32%] to angiography), with 415 final OCT acquisitions analysed for the primary endpoint (140 [34%] in the OCT group, 135 [33%] in the IVUS group, and 140 [34%] in the angiography group). The final median minimum stent area was 5.79 mm² (IQR 4.54-7.34) with OCT guidance, 5.89 mm² (4.67-7.80) with IVUS guidance, and

50140-6736(16)31922-5 See Online/Comment http://dx.doi.org/10.1016/ 50140-6736(16)32062-1 *Investigators listed in the appendix New York Presbyterian Hospital and Columbia University, New York, NY, USA (Z A A5 MD, A Maehara MD, T M Nazif MD, O Ben-Yehuda MD, Prof GW Stone MD); Cardiovascular Research Foundation, New York, NY, USA (Z A Ali, A Maehara, P Généreux MD, T M Nazif, M Matsumura 85, M O Ozan M5, G S Mintz MD, O Ben-Yehuda, Prof GW Stonely St Francis Hospital, Roslyn, New York, NY USA (R A Shlofmitz MD); Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy (F Fabbiocchi MD): Ospedale Papa Giovanni XXIII, Bergamo, Italy (G Guagliumi MD); Northwell Health, Manhasset New York, NY, USA (P M Meraj MD); Hospital

(Prof M A Leesar MD)

Interpretation OCT-guided PCI using a specific reference segment external elastic lamina-based stent optimisation strategy was safe and resulted in similar minimum stent area to that of IVUS-guided PCI. These data warrant a largescale randomised trial to establish whether or not OCT guidance results in superior clinical outcomes to angiography guidance.

guidance.

ESC/EACTS GUIDELINES

2018 ESC/EACTS Guidelines on myocardial

revascularization

(Ger

Adna losef

Dirk (Swit

Docum

Co-ore (Norw

(Canad

Recommendations on intravascular imaging for procedural optimization

The Task Force on myocardial revascularization Society of Cardiology (ESC) and Europ Cardio-Thoracic Surgery (EACTS)

Developed with the special contributio Association for Percutaneous Cardiova

Authors/Task Force Members: Franz-Josef Neur (Germany), Miguel Sousa-Uva*1 (EACTS Chair (Sweden), Fernando Alfonso (Spain), Adrian P. (UK), Robert A. Byrne (Germany), Jean-Philipp

ty of Cardiology (ESC) and European Asso io-Thoracic Surgery (EACTS)	Recommendations	Class ^a	Level ^b	
loped with the special contribution of the I ciation for Percutaneous Cardiovascular In	IVUS or OCT should be considered in selected patients to optimize stent implantation. ^{603,612,651–653}	lla	в	
rs/Task Force Members: Franz-Josef Neumann* (ESC any), Miguel Sousa-Uva ^{*1} (EACTS Chairperson) (Po en), Fernando Alfonso (Spain), Adrian P. Banning (Ul Robert A. Byrne (Germany), Jean-Philippe Collet (Fr	IVUS should be considered to optimize treatment of unprotected left main lesions. ³⁵	lla	в	© ESC 2018
Restenosis				-
DES are recommended for the treatment of in-stent restenosis of BMS or DES. ^{373,375,378,379}		(\mathbf{I})	Α	
Drug-coated balloons are recommended for the treatment of in-stent restenosis of BMS or DES. ^{373,375,378,379}		- 11 1	Α	
In patients with recurrent episodes of diffuse in-stent restenosis, CABG should be considered by the Heart Team over a new PCI attempt.		lla	с	
IVUS and/or OCT should be considered to detect stent-related mechanical problems leading to restenosis.		lla	с	

Stent sizing

ESC European Society of Cardiology

FASTTRACK CLINICAL RESEARCH Coronary artery disease

Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions

Endorsed by the Chinese Society of Cardiology

Lorenz Räber¹, Gary S. Mintz², Konstantinos C. Koskinas¹, Thomas W. Johnson³, Niels R. Holm⁴, Yoshinubo Onuma⁵, Maria D. Radu⁶, Michael Joner^{7,8}, Bo Yu⁹, Haibo Jia⁹, Nicolas Meneveau^{10,11}, Jose M. de la Torre Hernandez¹², Javier Escaned¹³, Jonathan Hill¹⁴, Francesco Prati¹⁵, Antonio Colombo¹⁶, Carlo di Mario¹⁷, Evelyn Regar¹⁸, Davide Capodanno¹⁹, William Wijns²⁰, Robert A. Byrne²¹, and Giulio Guagliumi²²*

Coordinating editor: Prof Patrick W. Serruys, MD, PhD, Imperial College, London, UK

Document Reviewers: Fernando Alfonso²³, Ravinay Bhindi²⁴, Ziad Ali²⁵, Rickey Carter²⁶

- The beneficial effect of imaging-guided PCI does not appear to be strictly linked to the algorithm used for stent sizing by IVUS or OCT.
- From a practical standpoint, a distal lumen reference based sizing may represent a safe and straightforward approach with subsequent optimization of the mid and proximal stent segments. Specifically, the mean distal lumen diameter with up rounding stent (0–0.25 mm) may be used (e.g. $3.76 \rightarrow 4.0$ mm), or the mean EEM (2 orthogonal measurements) with down rounding to the nearest 0.25 mm stent size (e.g. $3.76 \rightarrow 3.5$ mm).
- When using OCT, an EEM reference based sizing strategy appears feasible, although more challenging than a lumen based approach for routine clinical practice.
- Appropriate selection of the landing zone is crucial as residual plaque burden (<50%) and particularly lipid rich tissue at the stent edge is associated with subsequent restenosis.
- Co-registration of angiography and IVUS or OCT is a useful tool to determine stent length and allows for precise stent placement.

Wakayama Medical University

Räber L, et al. Eur Heart J 2018:39;3281-3300

Post PCI optimization

Räber L, et al. Eur Heart J 2018:39;3281-3300

Pre-PCI assessment, #6 90%, (DES 4.0 × 15mm)

Precursor lesion of stent edge restenosis

In 744 stent (EES) edge segments, OCT was used to evaluate morphological characteristics of the coronary plaques that developed stent edge restenosis.

Both stent edges (n = 744)

(A) Immediately after EES implantation, OCT images showed lipid rich plaque at the proximal stent edge (a, b).(B) At 10-month follow-up, angiography demonstrated stent edge restenosis at the proximal edge of the stent.

Conclusion: Lipidic plaque in the stent edge segments at post- PCI was a predictor of late stent edge restenosis.

Ino Y, et al. Cric CV Interv 2016;9:e004231 DOI:10.1161/CIRCINTERVENTIONS.116.004231.

Relation between lipid arc in stent edge at the time of PCI & frequency of SER at 9-12 months follow-up

Within lepidic plaques, stent edge restenosis could be identified more frequently in cases with grater lipid arc at the stent edge.

Ino Y, et al. Cric CV Interv 2016;9:e004231 DOI:10.1161/CIRCINTERVENTIONS.116.004231.

Post-PCI assessment, #6 90%, (DES 4.0 × 15mm)

MLA ≥ 90% of the average reference lumen area

Coronary angio. (Pre PCI)

<u>PCI for #6-7</u>

EES : 2.5*26mm / 2.75*26mm (14atm.) Wakayama Medical University

Volumetric Stent Expansion Assessment

Nakamura D, et al. J Am Coll Cardiol Intv 2018;11:1467-1478

Normalized Expansion Index Value = actual lumen area / ideal lumen area x 100 MEI = cross section with lowest expansion index along the entire stented segment Nakamura D, et al. J Am Coll Cardiol Intv 2018;11:1467-1478 Wakayama Medical University

Correlation of %AS with Final FFR Value for Conventional Method and New Volumetric Method

Nakamura D, et al. J Am Coll Cardiol Intv 2018;11:1467-1478

New Development in OCT

3-D reconstruction and auto-detection of stent incomplete apposition can be demonstrated as fly through image by new OCT.

Calcium eccentricity, thickness & length and stent expansion

Angle: 360° Thickness: 0.48 mm Length: 3.8 mm Calcium score: 2 points

Expansion: 99%

Angle: 75° Thickness: 1.1 mm Length: 4.3 mm Calcium score: 1 point

Expansion: 97%

Angle: 312° Thickness: 1.4 mm Length: 11.0 mm Calcium score: 4 points

Expansion: 68%

Fusiono A, et al. EuroInterv 2018;13:e2182-e2189

Broken calcium plate

Broken calcium plate

Broken calcium plate

Broken calcium plate

Broken calcium plate

Stent malappsoition

Prediction of calcium plate fracture by ballooning

OFDI was performed to assess vascular response immediately after high pressure ballooning in 61 patients with severe calcified coronary lesion.

Conclusion: A calcium plate thickness < 505 µm was the corresponding cut-off value for predicting calcium plate fracture by high pressure ballooning.

Kubo, Akasaka et al. JACC Imag 2015;8:1228-9

Stent expansion at post-PCI Minimum stent area Stent expansion index p = 0.047p = 0.030(mm²) 1.2 6 5.02±1.43 8.0 0.88±0.17 4 4.33±1.22 0.78±0.18 0.6 0.4 2 0.2 0 0 Calcium fracture (+) Calcium fracture (-) Calcium fracture (+) Calcium fracture (-)

(n = 29)

Minimum stent area and stent expansion index were significantly greater in the group with calcium fracture compared with the group without calcium fracture.

(n = 29)

Kubo, Akasaka et al. JACC Imag 2015;8:1228-9

(n = 32)

Wakayama Medical University

(n = 32)

Restenosis and TLR at 10 months follow-up

The frequency of binary restenosis and target lesion revascularization was significantly lower in the group with calcium fracture compared with the group without calcium fracture.

Kubo, Akasaka et al. JACC Imag 2015;8:1228-9

Cardiovascular Intervention and Therapeutics (2019) 34:242–248 https://doi.org/10.1007/s12928-018-0553-6

ORIGINAL ARTICLE

Plaque modification of severely calcified coronary lesions by scoring balloon angioplasty using Lacrosse non-slip element: insights from an optical coherence tomography evaluation

Yu Sugawara¹ · Tomoya Ueda¹ · Tsunenari Soeda¹ · Makoto Watanabe¹ · Hiroyuki Okura¹ · Yoshihiko Saito¹

0.4

1-specificity

85.9%

02

0.2*

0.0

0.0

535µm

AUC 0.930; 95% CI 0.873-0.987; sensitivity 86.7%; specificity

0.8

06

1.0

OCT based calcium scoring system

OCT-based calcium score			
1. Maximum calcium angle (°)	≤180° >180°	→ 0 point→ 2 points	
2. Maximum calcium thickness (mm)	≤0.5 mm >0.5 mm	→ 0 point→ 1 point	
3. Calcium length (mm)	≤5.0 mm >5.0 mm	→ 0 point→ 1 point	
Total score	0 to 4 points		

Fusiono A, et al. EuroInterv 2018;13:e2182-e2189

OCT-guided PCI for severe calcified lesions

Shlofmitz E, et al. Curr Cardiovasc Imaging Rep 2019;12;32

3D-OCT image before KBT

3D-OCT image after re-wiring before KBT

3D-OCT image after KBT

Take home message Imaging guidance for PCI

- Pre- & post-PCI lesion morphology can be assessed easily, precisely and accurately by imaging because of higher resolution, auto-pullback & automeasurement systems, angio-co-registration, and/or 3D reconstruction, etc., compared with coronary angiography alone.
- Imaging-guided PCI is becoming more popular in daily clinical practice based on the guideline recommendation as class IIa, and expert consensus document of imaging-guided PCI optimization has described recently.
- Much more precise PCI could be expected by OCT compared with IVUSguidance in specific lesions such as severe calcification, left main bifurcation, and so on, and OCT may allow us to change our daily clinical practice in PCI and to expect further improvement in the result of PCI.
- Although clinical evidences of superiority to angio-guided PCI has been demonstrated not in OCT-guided but in IVUS-guided at the moment, randomized prospective studies of OCT-guided PCI compared with angioguided could demonstrate the advantages of OCT especially for specific pathological condition including diffuse, calcified, or bifurcation lesion.

