TAVR for Bicuspid AS: Optimal Sizing & Valve Selection

Jung-Min Ahn, MD

Division of Cardiology, University of Ulsan College of Medicine, Heart Institute, Asan Medical Center, Seoul, Korea

First-In-Man TAVR was done in **Bicuspid AV**

Cribier A, et al. Circulation. 2002;106:3006-3008

Bicuspid AV is Very Common

- 1-2% of the General Population
- >33% Have Serious Complications*
- Aortic Stenosis Is The Most Frequent Complication

*Valve Complication (AS, AR, infection), Vascular Complication (Medial Degeneration, Aneurysm, Dissection)

Fedak P W et al. Circulation. 2002;106:900-904

Incidence of Bicuspid AV in isolated AVR 584 men and 348 women from USA (Baylor University)

Concerns of Bicuspid AS TAVR

Small Calcification

Anatomical Concern

- Annular eccentricity
- Asymmetrical heavy valve calcification
- Unequally-sized leaflets
- Calcified raphe
- Concomitant aortopathy
- Lack of Standardized Annulus Measurement

Procedural Concern

- Elliptical deployment
- Impaired Bioprosthesis Durability
- Residual Aortic Regurgitation
- Annulus Rupture
- Coronary Obstruction
- Aortic Complication

Case: M/79 with Bicuspid AS

Annulus Plane

Practical Issues

- Feasible?
- Which Type of Valves?
- How To Select Optimal Size?
- Pre- and Post Balloon?
- Device Underexpansion
- Associated Aortopathy

STS/ACC TVT Registry

Sapien 3

Evolut R

JAMA 2019 Jun 11;321(22):2193-2202

JACC CVI 2020 May 23;S1936-8798(20)30763-9

Valve Type

2 Year Mortality of TAVR

Higher Aortic Root Injury Balloon Expandable Higher PVL Self Expandable

Yoon SH, et al. J Am Coll Cardiol. 2017 2017 Mar 15. pii: S0735-1097(17)36041-2

Device Sizing

Various sizing methodologies are proposed for TAVR in BAV

THE STRUCTURAL HEART DISEASE SUMMIT 2018 Transcatheter Valve Therapies (TVT) and LAA/PFO Closure

Courtesy of Didier Tchetche, Clinique Pasteur, Toulouse, France

Cardiovascular

Device Sizing

Sizing according to the landing zone configuration

BABARD Registry (N=96, S3 65, Lotus 10, Evolut R 21)

THE STRUCTURAL HEART DISEASE SUMMIT 2018 Transcatheter Valve Therapies (TVT) and LAA/PFO Closure

Circulation: Cardiovascular Interventions. 2019;12

Device Sizing

Annulus Sizing

Supra-annulus Sizing

S3 Don't Do Oversizing Too Much, ~5%

Sequential balloon sizing

Experimental distance
CASPER method

BE "remodels" the annulus

The annulus "remodels" SE

Balloon Aortic Valvuloplasty More Often in Bicuspid AS

Goal

- 1) To facilitate device delivery
- 2) To confirm the device size
- To assess the risk of coronary obstruction

To avoid the risk of aortic complex injury, relatively small balloon should be selected based on the CT measurement of aortic valve complex.

Post-Implantation

RAO Projection

Post-Ballooning

ATLAS[®] PTA Dilatation Catheter (20 mm x 4 cm)

CardioVascular Research Foundation

Spectrum of BAV Disease

Aortic Valve Morphology

Diastole

Combined Aortopathy

Kang JW, Song JK et al. JACC: Cardiovascular Imaging 2013 Feb;6(2):150-61

Type 1

Type 2

Type 3

Type 4

Type 5

BAV Aortopathy

Aortic Dilatation (Tubular Portion)

Itagaki S et al. JACC 2015 Jun 9;65(22):2363-9

Kim YG et al. 2012 Dec;98(24):1822-7

Associated BAV Aortopathy

*JACC 2016 Surgery for Aortic Dilatation in Patients With Bicuspid Aortic Valves

ASAN TAVR Registry (2011-2019)

Age Proportion of TAVR for Bicuspid AS

Proportion of TAVR for Bicuspid AS

Type of Bicuspid AV*

*Sievers HH et al. J Thorac Cardiovasc Surg 2007;133:1226–33.

Type of Bicuspid AV*

Tubular type: perimeter derived annulus diameter/ICD ratio 0.99-1.1 Tapered type: perimeter derived annulus diameter/ICD ratio >1.1 Flared type: perimeter derived annulus diameter/ICD ratio <0.99

Circulation: Cardiovascular Interventions. 2019;12

Baseline Characteristics

	Bicuspid AS (N = 72)	Tricuspid AS (N = 493)	P value
Age	77.0±5.4	79.2±5.2	0.001
Gender (Male)	68.2%	47.3%	0.001
NYHA Class III/IV	31.8%	43.0%	0.08
Logistic EuroSCORE	9.7±8.4	15.2 ± 12.1	<0.001
STS score	2.7±1.5	4.3 ± 3.3	<0.001
Diabetes Mellitus	18.2%	32.3%	0.02
Hypertension	59.1%	81.5%	<0.001
Previous Stroke	15.2%	12.2%	0.49
Peripheral Vascular Disease	3.0%	5.5%	0.31
Previous PCI	13.6%	30.0%	0.005
Previous CABG	0%	6.1%	0.04
LVEF, %	59.0±9.9	58.5±11.2	0.84

ASAN Medical Center

CT Measurement

	Bicuspid AS (N = 72)	Tricuspid AS (N = 493)	P value
Annulus Dimensions			
Area, mm ²	513±101	430±83	<0.001
Perimeter, mm	81.5±8.2	75.0±7.0	<0.001
Mean diameter, mm	25.7±2.6	23.6±2.3	<0.001
Sinus of Valsalva area, mm ²	1004±207	796±179	<0.001
LVOT Area, mm ²	486±122	410±107	<0.001
LM Height, mm	15.2±3.6	12.8±2.4	<0.001
RCA Height, mm	18.7±5.9	16.7±3.1	0.001

ASAN Medical Center

Valve Calcification Volume

Calcification Morphology and Outcomes

Severe AV calcification

Higher Aortic Root Injury Higher PVL

J Am Coll Cardiol. 2020;76(9):1018-30

Procedural Outcomes

	Bicuspid AS (N = 72)	Tricuspid AS (N = 493)	P value
Pre-Balloon Valvuloplasty	63 (87.5%)		
Conversion To Surgery	3 (4.2%)	3 (0.6%)	0.006
	Annular rupture: 1 Wire perforation: 1 Valve migration: 1		
Coronary Obstruction	0%	4 (0.8%)	0.58
Annular Rupture	1 (1.4%)	1 (0.2%)	0.24
	Sapien XT: 1		
Second Valve Implantation	2 (2.8%)	11 (2.2%)	0.51
	CoreValve: 2		
New Permanent Pacemaker	7 (11.3%)	41 (9.2%)	0.61
	CoreValve: 2 Evolut R: 2 Sapien 3: 3		
PVL ≥ Moderate	10 (16.7%)	35 (7.9%)	0.055

Para-Valvular Leakage

ASAN Medical Center

Heart Valve for Bicuspid AS

ASAN TAVR Registry

Procedural Outcomes Sapien 3 Cohort

	Bicuspid AS (N = 46)	Tricuspid AS (N = 232)	Р
Valve Oversizing to annulus, %	10 7 .6±7.7	1 13 .4±6.1	<0.001
Pre-Balloon Valvuloplasty	38 (82.6%)	119 (51.3%)	<0.001
Conversion To Surgery	1 (2.2%)	0%	0.17
	Valve migration: 1		
Coronary Obstruction	0%	3 (1.3%)	0.58
Annular Rupture	0%	1 (0.4%)	0.84
Second Valve Implantation	0%	0%	NA
New Permanent Pacemaker	3 (6.5%)	11 (4.7%)	0.42
PVL ≥ Moderate	4 (8.7%)	4 (1.7%)	0.03
	Valve migration: 1 Raphe calcification: 3		
Post-dilation	22 (47.8%)	79 (34.1%)	0.08

Optimal TAVR for Bicuspid AV

- We need more experiences.
- Case selection is important
- The incidence of paravalvular leakage is increased compared to tricuspid aortic valve cohorts undergoing TAVR, particularly with self-expandable device. Aortic injury should be considered in TAVR with balloonexpandable device.
- TAVR for bicuspid AS is not associated with excess mortality.
- The selected patients with bicuspid AV stenosis would be a candidate of TAVR with better devices.

• Don't Do Oversizing in S3, ~5%