FFR-Guided PCI for Multivessel CAD in 2022

William F. Fearon, MD

Professor of Medicine Director, Interventional Cardiology Stanford University School of Medicine Chief, Cardiology Section VA Palo Alto Health Care System

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest /arrangement or affiliation with the organization(s) listed below

Affiliation/Financial Relationship Grant/ Research Support:
Consulting Fees/Honoraria:
Major Stock Shareholder/Equity Interest:
Royalty Income:
Ownership/Founder:
Salary:
Intellectual Property Rights:
Other Financial Benefit:

<u>Company</u> Abbott, Medtronic, Boston Scientific

CathWorks

NIH R61 HL139929-01A1 (PI)

Minor Stock Options: HeartFlow

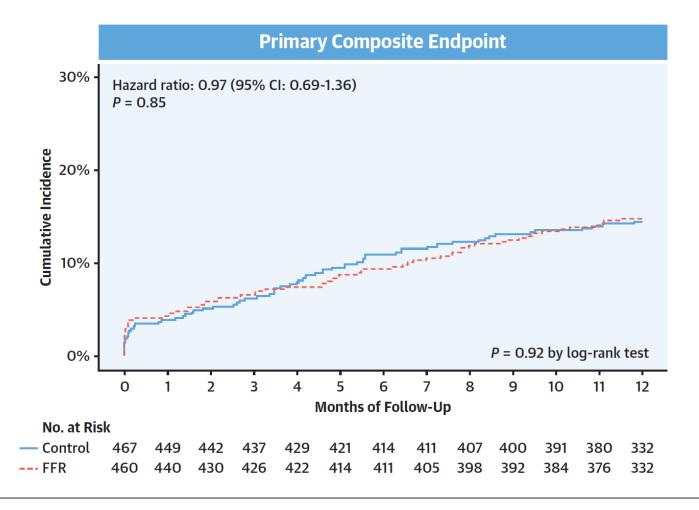
Was 2021 a Bad Year for FFR?

FFR-Guided PCI Trials in 2021 in Patients with Multivessel CAD

FUTURE

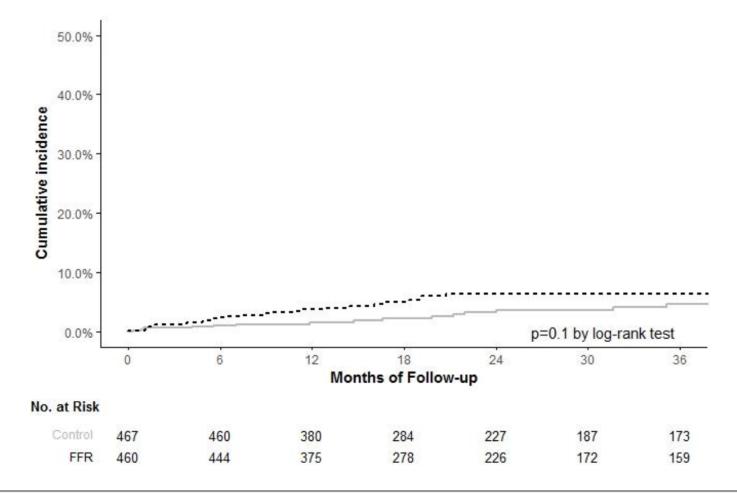
FLOWER-MI

FAME 3



FFR-guided therapy in patients with multivessel CAD

- Multivessel CAD patients were randomly assigned to FFR-guided therapy (medical, PCI or CABG) or angio-guided therapy.
- Primary endpoint was MACCE at 1 year.
- The study was stopped prematurely after enrolment of 927 patients because of a signal for increased mortality in the FFR-guided group.


Primary Endpoint: One Year MACCE

Rioufol G, et al. J Am Coll Cardiol 2021;78:1875-85.

No Difference in Mortality Between FFR- and Angio-guidance

Rioufol G, et al. J Am Coll Cardiol 2021;78:1875-85.

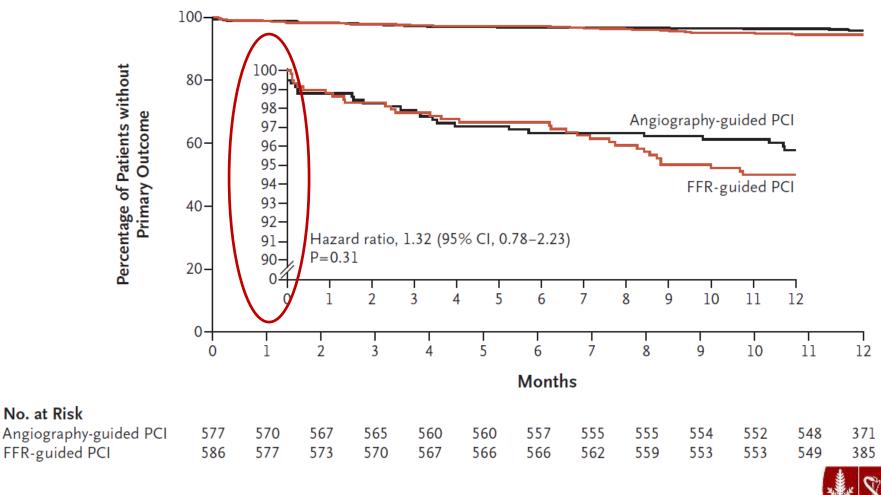
Why didn't FFR-guided therapy outperform angio-guided therapy?

- This is a fairly complex patient population with relatively high SYNTAX score (19) and >50% with 3-vessel CAD.
- 127 lesions with FFR>0.80 received PCI anyway (27% of the FFR negative lesions).
- The study was underpowered with just 54% of the planned population enrolled.
- Finally, only 8% of patients received a different treatment.

Very little difference in ultimate treatment between two arms

	Control Group (n = 467)	FFR Group (n = 460)	P Value ^a
Revascularization strategy			0.002
Optimal medical treatment only	43 (9.0)	78 (17.0)	
CABG	55 (12.0)	54 (12.0)	
PCI	369 (79.0)	328 (71.0)	

Only 8% of patients (≈35-40) in the FFR-guided group received a different treatment (OMT instead of PCI) than in the Angio-guided group.



FFR-Guided PCI Trial in STEMI Patients with Multivessel CAD

- 1,163 patients with STEMI and successful primary PCI who had at least one other major vessel with ≥50% diameter stenosis
- Randomized to FFR-guided complete revascularization or angiography-guided complete revascularization
- Primary endpoint of death, MI or unplanned hospitalization with urgent revascularization at one year

Death, MI or hospitalization with urgent revascularization at 1 year

Death, MI or hospitalization with urgent revascularization at 1 year

Outcomes	FFR-Guided Group (N = 586)	Angiography-Guided Group (N = 577)	Hazard Ratio or Difference (95% Cl)†	P Value
Primary outcome				
Composite outcome — no. (%) <u>‡</u>	32 (5.5)	24 (4.2)	1.32 (0.78–2.23)	0.31
Death from any cause	9 (1.5)	10 (1.7)	0.89 (0.36–2.20)	
Nonfatal myocardial infarction§	18 (3.1)	10 (1.7)	1.77 (0.82–3.84)	
Unplanned hospitalization leading to urgent revascular- ization				
Patients with condition — no. (%)	15 (2.6)	11 (1.9)	1.34 (0.62–2.92)	
Treatment of target lesions in nonculprit artery by urgent revascularization — no./total no. (%)	8/15 (53.3)	3/11 (27.3)	_	

Procedural MI occurred in 7 patients in the FFR-guided arm and 2 patients in the angio-guided arm. Unclear why, when angio-guided groups had 260 more lesions treated with PCI.

Puymirat E, et al. N Engl J Med 2021; 385:297-308

Other trial design considerations

- Ideally, randomization would have occurred after operators stated which non-culprit lesions would be treated.
- Instead, 980 lesions were identified in the FFR-guided arm vs 891 treated in the angioguided arm.
- This explains why contrast usage and procedure time were similar between groups. Would have expected less with FFR.

Other trial design considerations

- In addition, of the 980 lesions identified in the FFR-guided arm, the FFR value was missing in 154.
- There were 460 lesions with FFR ≤0.80, yet PCI was performed in 546 lesions in the FFRguided arm.
- An average of 1.1 stents were placed in nonculprit lesions in the FFR-guided arm compared with 1.5 in the angio-guided arm.

Other trial design considerations

 Ideally, FFR would have been measured in a blinded fashion in the angio-guided patients, allowing a comparison of PCI vs medical therapy for non-culprit lesions with FFR>0.80

Was FLOWER-MI a negative trial for FFR?

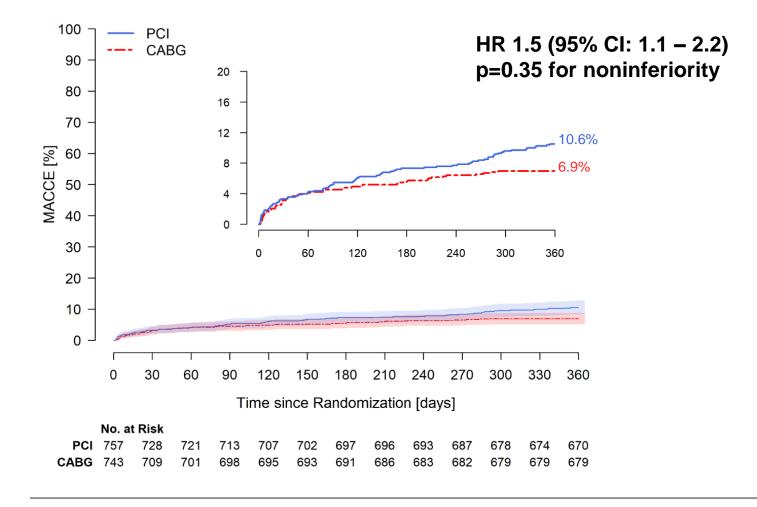
- Should we have expected better outcomes with FFR in this STEMI population?
 - Both groups had a STEMI and underwent primary PCI. *Expect similar outcome*
 - 66% of the FFR-guided patients underwent nonculprit PCI, 3% of angio-guided patients did not have non-culprit PCI. *Expect similar outcome*
 - Only 198 patients in the FFR-guided arm did not have non-culprit PCI and could potentially contribute to a different outcome

FFR-guided PCI vs CABG in patients with 3-vessel CAD

- 1,500 patients with 3-vessel CAD (not involving the left main) randomized to FFRguided PCI with current generation DES or to CABG.
- Primary endpoint was the rate of MACCE (death, MI, stroke, or repeat revascularization) at one year.
- Noninferiority design with margin set at a hazard ratio of 1.65.

Baseline Characteristics

Variable	PCI (n=757)	CABG (n=743)
Age	65 ± 8 years	65 ± 8 years
Male	81%	83%
Caucasian	94%	92%
HTN	71%	75%
Dyslipidemia	69%	72%
Current Tobacco Use	19%	18%
Diabetes	28%	29%
Insulin dependent	7%	8%
ACS presentation	40%	39%
EF≤50%	18%	18%
Prior PCI	13%	14%



Procedural Characteristics

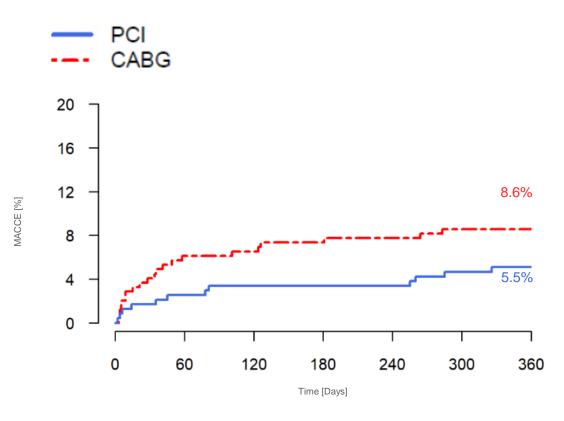
Variable	PCI (n=757)	CABG (n=743)
Time to procedure	4 days	13 days
Procedure duration	87 min	197 min
Length of hospital stay	3 days	11 days
Number of lesions	4.3	4.2
≥1 Chronic occlusion	21%	23%
≥1 Bifurcation lesion	69%	66%
SYNTAX Score	26	26
Low (0-22)	32%	35%
Intermediate (23-32)	50%	48%
High (>33)	18%	17%

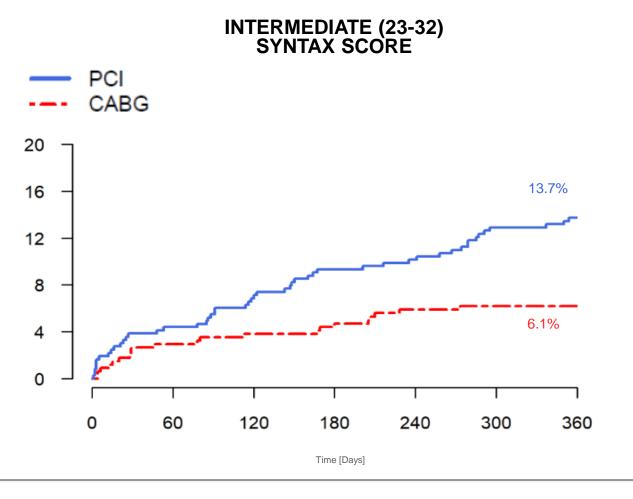
Primary Endpoint: MACCE at one year

Secondary Endpoints

Endpoint	PCI (n=757)	CABG (n=743)	Hazard Ratio
Death	1.6%	0.9%	1.7 (0.7-4.3)
Cardiac death	0.8%	0.5%	
мі	5.2%	3.5%	1.5 (0.9-2.5)
Procedural	1.7%	1.2%	
Spontaneous	3.3%	2.3%	
Stroke	0.9%	1.1%	0.9 (0.3-2.4)
Repeat Revascularization	5.9%	3.9%	1.5 (0.9-2.3)
Death, MI or Stroke	7.3%	5.2%	1.4 (0.9-2.1)

Secondary Safety Endpoints


Endpoint	PCI (n=757)	CABG (n=743)	<i>p</i> -value
BARC Type 3-5 Bleeding	1.6%	3.8%	< 0.01
Acute Kidney Injury	0.1%	0.9%	< 0.04
Atrial Fibrillation/Arrhythmia	2.4%	14.1%	< 0.001
Definite Stent Thrombosis	0.8%	N/A	
Symptomatic Graft Occlusion	N/A	1.3%	
Rehospitalization w/in 30 days	5.5%	10.2%	< 0.001

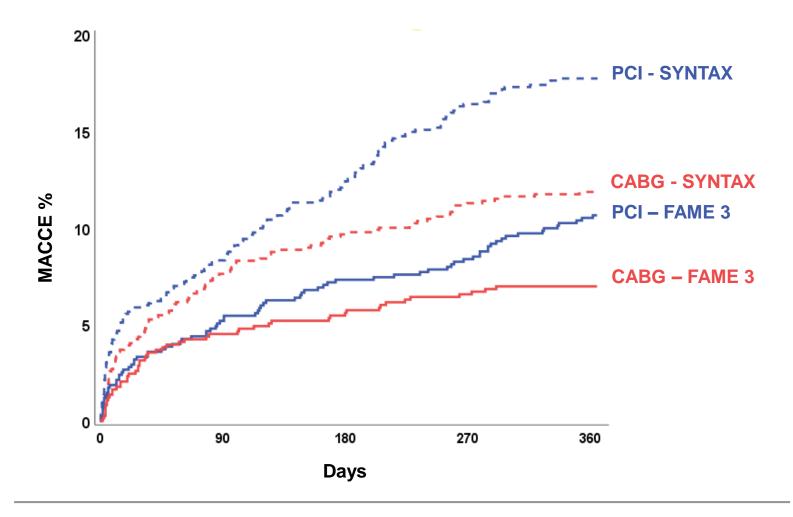

MACCE According to SYNTAX Score

LOW (<23) SYNTAX SCORE

MACCE According to SYNTAX Score

MACCE According to SYNTAX Score

HIGH (>32) SYNTAX SCORE PCI CABG 12.1% 6.6% Time [Days]



Was FAME 3 a negative trial for FFR?

- Only 24% of lesions in the FFR-guided patients had an FFR>0.80
- 21% of patients had a CTO
- Mean SYNTAX score was 26
- In patients with complex CAD, where FFR will be mostly positive, and where we know from previous studies, CABG outperforms PCI, FFR-guided PCI is less likely to have a benefit.

MACCE Outcomes in FAME 3 Compared with SYNTAX Trial

Observations

- What is the role of FFR-guided PCI in patients with multivessel CAD in 2022?
 - For any test to be useful, one must follow the results of the test; if the FFR is >0.80 then defer.
 - To optimize the benefit of FFR, apply it in cases where one is not certain about the significance of a lesion.
 - FUTURE, FLOWER-MI and FAME 3 all included patients with very low rates of negative FFRs.

Conclusion

- There is a wealth of data supporting the role of FFR in patients with multivessel CAD.
- FFR-guided PCI is still beneficial in patients with multivessel CAD, as long as it is applied in appropriate scenarios where it is likely to affect decision-making, and as long as its results are heeded.

