Strategies of IVUS-Guided Left Main PCI

SYNERGY MEGATRON™ BP Stent

SNUH Jeehoon Kang, MD
Issues in Left Main PCI

- Associated with a large extent myocardium
- Despite many RCTs and meta-analysis, we still do not know how to treat LM disease patients.
 - EXCEL and NOBLE trial, and a IPD meta

• How can we perform Optimal LM Stent implantation?
IVUS in Left Main PCI

• Previous trials have shown that Intravascular ultrasound (IVUS) guided-PCI improves clinical outcomes, compared to angiography guided PCI.
IVUS in Left Main PCI

- Previous trials have shown that Intravascular ultrasound (IVUS) guided-PCI improves clinical outcomes, compared to angiography guided PCI.

- **What can be earned from IVUS evaluation?**

 - Necessity of adjunctive lesion preparation
 - Optimal device sizing to achieve the largest lumen
 - Appropriate stent length to avoid geographic miss
 - Stent underexpansion or residual disease at the stent edge requiring further treatment
 - Acute complications including stent edge dissection or stent deformation.
Acute Longitudinal Stent Deformation

Prevalence and Anatomical Features of Acute Longitudinal Stent Deformation: An Intravascular Ultrasound Study

Shinji Inaba,1,2 MD, Giora Weisz,1,2 MD, Nobuaki Kobayashi,1,2 MD, PHD, Shigeo Saito,1,2 MD, Tomotaka Dohi,1,2 MD, Liang Dong,1,2 MD, Lin Wang,1,2 MD, Joyce A. Moran,2 CCRC, LeRoy E. Rabbani,3 MD, Manish A. Parikh,1,2 MD, Martin B. Leon,1,2 MD, Jeffrey W. Moses,1,2 MD, Gary S. Mintz,1 MD, and Akiko Maehara,1,2 MD

Fig. 1. Prevalence of deformation in according to lesion location. In the entire cohort there were 96 left main, 229 ostial, and 540 bifurcation lesions. Deformation was most frequently observed in the left main coronary artery.
Predictors of LSD

Predictors and Long-Term Clinical Outcome of Longitudinal Stent Deformation
Insights From Pooled Analysis of Korean Multicenter Drug-Eluting Stent Cohort

Tae-Min Rhee, MD; Kyung Woo Park, MD, PhD; Joo Myung Lee, MD, MPH, PhD; Michael S. Lee, MD; Ki-Hyun Jeon, MD; Hyun-Jae Kang, MD, PhD; Bon-Kwon Koo, MD, PhD; Juy Young Rhee, MD, PhD; Kwang Soo Cha, MD, PhD; Jang-Ho Bae, MD; Kyoo-Rok Han, MD; Si-Hoon Park, MD; Woo-Jung Park, MD, PhD; Seung-Woon Rha, MD; Seok-Kyu Oh, MD, PhD; Hyuck Moon Kwon, MD; Ki-Bae Seung, MD; Taehoon Ahn, MD, PhD; Sang-Hyun Kim, MD, PhD; Hyo-Soo Kim, MD, PhD

<table>
<thead>
<tr>
<th>Lesion factors</th>
<th>Odds Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left main lesion</td>
<td>3.272 (1.608–6.659)</td>
<td>0.001</td>
</tr>
<tr>
<td>Ostial lesion</td>
<td>1.940 (1.072–3.514)</td>
<td>0.029</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stent-related factors</th>
<th>Odds Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak-to-peak stent platform (vs offset peak-to-peak)</td>
<td>1.520 (0.771–2.995)</td>
<td>0.227</td>
</tr>
<tr>
<td>Peak-to-valley stent platform (vs offset peak-to-peak)</td>
<td>0.766 (0.438–1.342)</td>
<td>0.352</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedural factors</th>
<th>Odds Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifurcation treatment with SB stenting</td>
<td>10.55 (5.372–20.72)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Additional downstream PCI</td>
<td>3.830 (2.384–6.154)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>IVUS or OCT use</td>
<td>3.291 (1.992–5.438)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Adjunctive POBA</td>
<td>3.287 (1.268–8.523)</td>
<td>0.014</td>
</tr>
<tr>
<td>Bifurcation treatment with SB ballooning</td>
<td>2.215 (1.243–3.944)</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Lesion-related factors
- Ostial lesion: 8.0% (24.4% LSD occurred vs 20.7% LSD not occurred)
- Severe calcification: 10.2% (20.7% LSD occurred vs 10.2% LSD not occurred)
- Left main lesion: 2.4% (17.1% LSD occurred vs 17.1% LSD not occurred)

Procedure-related factors
- Any use of secondary device after stenting: 52.3% (97.6% LSD occurred vs 52.3% LSD not occurred)
- Adjunctive POBA: 79.8% (93.9% LSD occurred vs 79.8% LSD not occurred)
- IVUS or OCT use: 36.4% (72.0% LSD occurred vs 36.4% LSD not occurred)
- Additional downstream PCI: 19.2% (47.6% LSD occurred vs 19.2% LSD not occurred)
- Bifurcation treatment with side branch POBA: 8.4% (22.0% LSD occurred vs 8.4% LSD not occurred)
- Bifurcation treatment with side branch stenting: 1.1% (17.1% LSD occurred vs 1.1% LSD not occurred)
- Additional stenting in the same lesion: 9.8% (17.1% LSD occurred vs 9.8% LSD not occurred)
Significantly worse outcomes when stent strength is compromised

EXCEL Left Main IVUS Substudy

3-Year Left Main-Related Major Adverse Cardiac Events**

Unadjusted HR: 2.32 (95% CI: 1.15, 4.68)

Log Rank P-value = 0.02

- 28.0%
- 13.4%

<table>
<thead>
<tr>
<th>Time (Months)</th>
<th>Number at risk: Stent deformation</th>
<th>Number at risk: No stent deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>36</td>
<td>30</td>
<td>15</td>
</tr>
</tbody>
</table>

- Acute stent deformation occurred in 6.5% of cases (35/506)
- Statistically higher MACE rates when stent deformation occurred

1. Frequency and Impact of Acute Stent Deformation After PCI of Left Main Coronary Artery Disease: An EXCEL Trial Intravascular Ultrasound Substudy. CRF/Columbia University Medical Center. TCT 2017.
2. **MACE includes cardiac death, LM-related MI, LM-ischemia-driven TLR, LM-related def/prob ST.
Large Proximal Vessel Clinical Data

Significantly worse outcomes when stent strength is compromised

- Predictors of LM-related MACE (adjusted HR)
- Final IVUS Findings in the patients with vs without MACE

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Adjusted Hazard Ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stent deformation</td>
<td>2.25 (1.10, 4.63)</td>
<td>0.03</td>
</tr>
<tr>
<td>Acute coronary syndrome presentation</td>
<td>0.55 (0.33, 0.93)</td>
<td>0.03</td>
</tr>
<tr>
<td>Male</td>
<td>0.62 (0.37, 1.04)</td>
<td>0.07</td>
</tr>
<tr>
<td>LM distal bifurcation lesion</td>
<td>2.12 (0.95, 4.72)</td>
<td>0.07</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1.49 (0.91, 2.45)</td>
<td>0.12</td>
</tr>
<tr>
<td>Baseline Syntax score (core lab)</td>
<td>1.02 (0.99, 1.04)</td>
<td>0.25</td>
</tr>
<tr>
<td>Final IVUS LM MSA (mm²)</td>
<td>0.91 (0.82, 1.01)</td>
<td>0.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stent Deformation with MACE</th>
<th>Yes (n=9)</th>
<th>No (n=24)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum stent area in LM (mm²)</td>
<td>8.1 (7.1, 9.7)</td>
<td>8.9 (7.3, 12.0)</td>
<td>0.25</td>
</tr>
<tr>
<td>Stent area at deformation (mm²)</td>
<td>8.6 (7.8, 9.5)</td>
<td>10.0 (6.7, 12.7)</td>
<td>0.75</td>
</tr>
<tr>
<td>Lumen area at deformation (mm²)</td>
<td>12.2 (8.8, 17.2)</td>
<td>10.3 (7.1, 13.5)</td>
<td>0.44</td>
</tr>
<tr>
<td>LM ostium fracture location</td>
<td>89% (8/9)</td>
<td>79% (19/24)</td>
<td>0.52</td>
</tr>
<tr>
<td>Floating stent in aorta</td>
<td>33% (2/6)</td>
<td>67% (16/24)</td>
<td>0.14</td>
</tr>
</tbody>
</table>

The presence of Stent deformation itself is a risk factor, even if it is not associated with a smaller lumen area, or is not floating in the aorta!!

1. Frequency and Impact of Acute Stent Deformation After PCI of Left Main Coronary Artery Disease: An EXCEL Trial Intravascular Ultrasound Substudy. CRF/Columbia University Medical Center. TCT 2017.
2. **MACE includes cardiac death, LM-related MI, LM-ischemia-driven TLR, LM-related def/prob ST.
How can the DES improve LSD?

Key features for an ideal LM stent

01 • High Radial and Axial Strength
- Fibrotic lesions in the proximal position can be more resistant and require extra radial strength.
- Maintaining stent integrity when adjunctive devices interact with the stent is critical, which requires extra axial strength.

02 • Larger Overexpansion Range
- Ability to size to the distal vessel and overexpand with confidence

03 • Optimized Scaffolding at Larger Diameters
- Reduce lumen loss due to tissue prolapse

04 • Placement Accuracy
- Better visibility to aid in accurate stent placement

1. Image from Ng, Jaryl et al. "Over-expansion capacity and stent design model: An update with contemporary DES platforms." Int J Cardiol 221 (2016): 171-179. Figure 1A, page 173.
SYNERGY MEGATRON™ Key Features
Purpose Built for Large Proximal Vessels

Best-in-Class
Axial & Radial Strength¹
For Proximal, Fibrotic Lesions

Unmatched Overexpansion²
To Accommodate Wide Diameter Mismatch

One model (3.5-5.0mm) with overexpansion to 6.0 mm.³

Uniform Lesion Scaffolding
To Maximize Lumen Gain

Maximum Visibility⁴
For Better Placement Accuracy

¹ Based on bench test data comparing to largest nominal diameter – 4.0mm for Xience Sierra and 5.0mm for SYNERGY MEGATRON and Resolute Onyx. N=3 minimum. Data on file at BSC. ² Compared to DFUs for SYNERGY, Xience Sierra, Orsiro and Resolute Onyx at 3.5mm overexpansion. ³ SYNERGY MEGATRON DFU. ⁴ Testing Completed by Boston Scientific data on file. Under 6.0mm copper phantom to simulate body mass. N=1. Bench test results may not necessarily be indicative of clinical performance.
SYNERGY MEGATRON™ BP Stent
Purpose-Built Stent Architecture

Purpose-built stent architecture to maximize performance for large vessel stenting\(^1\)

- **12 Peak Design with Shorter Strut Length**
 - For Radial Strength, Unmatched Expansion and Uniform Vessel Scaffolding

- **4 Connectors on Proximal Two Segments**

- **3 Connectors Throughout the Body**
 - For Exceptional Axial Strength

- **Platinum Chromium (PtCr) Alloy**
 - Specifically designed for coronary stents
 - For Visibility, Radial Strength, and Low Recoil

- **Optimized Strut Thickness and Width**
 - For Maximum Visibility and Radial Strength

- **8(2.5mm)-10 Peak(4.0mm) Design with Strut Length**

- **4-5 Connectors on Proximal Two Segments**

- **2 Connectors Throughout the Body**

1. Design data on file at Boston Scientific Corporation.
SYNERGY MEGATRON™ BP Stent
Mega Strength, Optimal Healing, Low recoil.

SYNERGY MEGATRON Demonstrated Highest Overall Strength in bench testing¹

Overall Strength in Perspective¹

SYNERGY MEGATRON BP Stent
Focused strut bending
Wider Peak

Xience Sierra™ PP Stent
Peak bending
Narrower Peak

Resolute Onyx™ PP Stent
Peak bending
Continuous Wire

2% Acute Lumen Loss¹

4% Acute Lumen Loss¹

5% Acute Lumen Loss¹

Bench tests performed by Boston Scientific Corporation. Data on file. 1. Xience Sierra 4.0 mm, Resolute Onyx 5.0mm, SYNERGY MEGATRON 5.0mm – largest nominal size for each device. N=3 minimum. 2. N=3 minimum. Bench test results not necessarily indicative of clinical performance.

©2021 Boston Scientific Corporation or its affiliates. All rights reserved. IC-961006-AC JUN2021
SYNERGY MEGATRON™ BP Stent
Maximum Visibility

Platinum Chromium Alloy Provides
Maximum Visibility to Aid in Accurate Stent Placement

One Study Showed:
Stent misplacement at the ostium occurs frequently and is associated with higher rates of restenosis and target lesion revascularization (TLR).

Why Visibility is Important

True ostium was missed in
54% of cases

“I’m very impressed at the visibility of MEGATRON...”

– Dr. Margaret McEntegart,
Golden Jubilee National Hospital

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Synergy MEGATRON BP-DES</th>
<th>Resolute Onyx™ PP-DES</th>
<th>XIENCE Sierra™ PP-DES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strut Thickness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0035" (89 µm)</td>
<td>0.0032" (81 µm)</td>
<td>0.0032" (81 µm)</td>
<td></td>
</tr>
</tbody>
</table>

1. Testing completed by Boston Scientific on file. 3.5 mm stent products tested under 6.0 mm copper phantom to simulate body mass. Bench test results may not necessarily be indicative of clinical performance. 2. SYNERGY MEGATRON image provided from Golden Jubilee Hospital. 3. “High Incidence of Inaccurate Stent Placement in the Treatment of Coronary Aorto-Ostial Disease” : https://www.invasivecardiology.com/articles/high-incidence-inaccurate-stent-placement-treatment-coronary-aorto-ostial-disease
SYNERGY MEGATRON™ BP Stent
Uniform Lesion Scaffolding with a 12-Peak Design

Uniform lesion scaffolding to minimize tissue prolapse and maximize lumen gain\(^1\)

- Stent pattern is maintained as its expanded
- Less tissue prolapse with a 12-peak design
- 33% improvement in tissue prolapse which can lead to larger MLDs\(^1\)

<table>
<thead>
<tr>
<th>Stent Pattern</th>
<th>Max Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-Peak Prototype DES</td>
<td>0.30</td>
</tr>
<tr>
<td>SYNERGY MEGATRON 12-peak Design</td>
<td>0.20</td>
</tr>
</tbody>
</table>

5.0 mm
3.5 mm

SYNERGY MEGATRON 12-peak Design

- Visible tissue prolapse (“pillowing”)
- Minimal tissue prolapse (smoother edges)

©2021 Boston Scientific Corporation or its affiliates. All rights reserved. IC-961006-AC JUN2021
Studying DAPT with PCI with Synergy
Leading on Studying Short DAPT

Supporting well-constructed prospective Short DAPT clinical trials to study the SYNERGY™ BP Stent in various complex patient populations†

<table>
<thead>
<tr>
<th>Study Name</th>
<th>Region(s)</th>
<th>Population</th>
<th>Primary Endpoint Data</th>
<th>Outcome Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVOLVE Short DAPT</td>
<td>US, Europe, Japan, Brazil</td>
<td>2,009 patients</td>
<td>IDE Trial</td>
<td>SYNERGY BP Stent</td>
</tr>
</tbody>
</table>

The SYNERGY BP Stent high bleeding risk (HBR) indication is supported by the EVOLVE Short DAPT Data

<table>
<thead>
<tr>
<th>Additional Short DAPT Trials</th>
<th>Region(s)</th>
<th>Population</th>
<th>Primary Endpoint Data</th>
<th>Outcome Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENIOR®</td>
<td>Europe</td>
<td>1,200 patients</td>
<td>SYNERGY BP Stent vs. REBEL® BMS</td>
<td>2-Year Data</td>
</tr>
<tr>
<td>IDEAL Left Main™</td>
<td>France, Ireland, The Netherlands, Poland, UK</td>
<td>818 patients</td>
<td>SYNERGY BP Stent vs. Xience PP Stent</td>
<td>Primary Endpoint Data</td>
</tr>
<tr>
<td>ASET®</td>
<td>Brazil</td>
<td>201 patients</td>
<td>SYNERGY BP Stent</td>
<td>Primary Endpoint Data</td>
</tr>
<tr>
<td>POEM™</td>
<td>Italy</td>
<td>443 patients</td>
<td>SYNERGY BP Stent</td>
<td>Primary Endpoint Data</td>
</tr>
<tr>
<td>SYNVUS-DAPT®</td>
<td>US</td>
<td>100 patients</td>
<td>SYNERGY BP Stent IVUS</td>
<td>Ongoing Enrollment</td>
</tr>
</tbody>
</table>

Indicated for High Bleeding Risk (HBR) patients.†

The HBR indication is based on the data from the EVOLVE Short DAPT Trial

* Investigator Sponsored Study. Boston Scientific is not responsible for the collection, analysis or reporting of the investigator-sponsored research output which is the sole responsibility of the investigators. Boston Scientific's involvement in investigator-sponsored research is limited to providing financial support for research that advances medical and scientific knowledge about our products.
† The safety and effectiveness of the SYNERGY BP Stent has not been established in patients with Left Main disease. Please review the SYNERGY DFU for full instructions on use. ‡ The HBR indication excludes the SYNERGY XD 48 mm stent.
Primary Results of the EVOLVE Short DAPT Study

Evaluation of 3-Month Dual Antiplatelet Therapy in High Bleeding Risk Patients Treated With a Bioabsorbable Polymer-Coated Everolimus-Euting Stent

Ajay J. Kirtane, MD; SM; Robert Stone, MD; Robert Feldman, MD; Franz-Josef Neumann, MD, PhD; Loxon Brohi, MD; Abesh Taherkhani, MD; Rajiv Toori, MD; Ilan Ohmner, MD; Bernardo Stern, MD; James W. Chou, MD; Stephan Winndercker, MD; Robert W. York, MD, MS; Harold L. Dauerman, MD; Matthew J. Price, MD; Paul Underwood, MD; Dominic Affocco, MD; Ian Meredith, AM, MBBS, PhD; Dean J. Kereiakes, MD

2009 patients implanted with at least 1 SYNERGY™ stent at 110 global sites

Withdrawn**: n=44
Death: n=37
Mislaid visit: n=16

Clinical follow-up at 3 months: N=1912 (95.2%)

Eligible to discontinue P2Y12 inhibitor at 3 months**: N=1487 (77.7%)
Analysis population: Death/MIs and ST, n=1487; BARC 2,3,5 bleeding, n=1032 (excluded 455 patients on anticoagulation)

Not eligible to discontinue P2Y12 inhibitor at 3 months**: N=425 (22.3%)
Not event-free (52): DAPT non-compliant (34); DAPT interruption ≥14 days (31); other (24); investigator decision (183); subject decision (152)

15-month follow-up: N=1385 (93.1%)
66 death
24 lost to f/u
10 withdrew consent
1 other
1 investigator discretion

15-month follow-up: N=382 (89.9%)
56 death
30 lost to f/u
42 withdrew consent
4 other
8 investigator discretion
Drug-eluting stents in elderly patients with coronary artery disease (SENIOR): a randomised single-blind trial

Oliver Varenne, Stéphane Cook, Georges Salen, Sasko Kade, Thomas Cuisaret, Didier Carril, Thomas Houasse, Philippe Garet, Rami El Mahmoud, Christian Spaulding, Gérard Héft, José F Diaz Fernandez, Salvatore Bragaletta, Eduardo Pinedo-Bermudez, Josep Maria Ferr, Philippe Corriveau, Emmanuel Tager, Kris Bogerts, Manuel Salvate, Marie-Claude Monce, Patrice Simoneau, for the SENIOR investigators

The SYNERGY™ BP Stent showed significantly lower MACCE** versus REBEL™ BMS at 1-year

A strategy of combination of a DES to reduce the risk of subsequent repeat revascularisations with a short BMS-like DAPT regimen to reduce the risk of bleeding event is an attractive option for elderly patients who have PCI.
SYNERGY™ BP Stent demonstrated a low rate of ischemic and bleeding events in an all-comers HBR patient population

One-Month Dual Antiplatelet Therapy After Bioresorbable Polymer Everolimus-Eluting Stents in High Bleeding Risk Patients

Carlo A. Pivato, MD; Berhard Reinier, MD; Luca Testa, MD, PhD; Andrea Pacchioni, MD; Carlo Bigi, MD, PhD; Camillo Murgia, MD; Pietro Giovanni Esposito, MD, PhD; Stefano Atzeni, MD, PhD; Mario Serrano- de la Cruz, MD, PhD; Federico Gombaro, MD; Andrea De Marco, MD; Anna Ferrante, MD, PhD; Patrizia Pizzella, MD; Giuseppe Ferrante, MD, PhD; Gerolamo Condorelli, MD, PhD; Valeria Paradisi, MD; Giannino Saracetti, MD; Cirio Incot, MD; Gianluigi Condorelli, MD, PhD; Giulo B. Biffani, MD, PhD, MSc.

1-year Primary Endpoint
4.82% (95% CI 3.17-7.31)

CA. Pivato et al. J Am Heart Assoc. 2022;11:e023454

POEM Trial
SYNERGY with 1-Month DAPT in HBR Patients
SYNERGY™ BP Stent Clinical Research Program

Robust Clinical Program Addressing the Full Spectrum of Cardiovascular Disease Complexity

Over 30,000 Patients

<table>
<thead>
<tr>
<th>Boston Scientific Core Trials</th>
<th>Imaging / Healing</th>
<th>DAPT</th>
<th>Long Lesions</th>
<th>Diabetes</th>
<th>ACS</th>
<th>CTO</th>
<th>Bifurcation Lesions</th>
<th>Multi-vessel Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVOLVE</td>
<td>TIMELESS</td>
<td>SENIOR</td>
<td>SYNTAX II</td>
<td>BIO-RESORT</td>
<td>SENIOR</td>
<td>SYNTAX II</td>
<td>SYNTAX II</td>
<td>SYNTAX II</td>
</tr>
<tr>
<td>EVOLVE II</td>
<td>MOVES</td>
<td>EVOLVE Short DAPT</td>
<td>BIO-RESORT</td>
<td>SWEET</td>
<td>BIO-RESORT</td>
<td>SWEET</td>
<td>BIO-RESORT</td>
<td>BIO-RESORT</td>
</tr>
<tr>
<td>EVOLVE China</td>
<td>TRANSFORM OCT</td>
<td>POEM</td>
<td>SCAAR</td>
<td>SCAAR</td>
<td>SCAAR</td>
<td>SCAAR</td>
<td>SCAAR</td>
<td>SCAAR</td>
</tr>
<tr>
<td>EVOLVE Short DAPT</td>
<td>SORT OUT VII</td>
<td>IDEAL Left Main</td>
<td>TRANSFORM OCT</td>
<td>SCAAR</td>
<td>IDEAL Left Main</td>
<td>TRANSFORM OCT</td>
<td>IDEAL Left Main</td>
<td>SCAAR</td>
</tr>
<tr>
<td></td>
<td>GREEK</td>
<td>SYNVUS</td>
<td>SCAAR</td>
<td>SCAAR</td>
<td>CTO</td>
<td>OCT/GSI</td>
<td>CTO</td>
<td>OCT/GSI</td>
</tr>
<tr>
<td></td>
<td>PLATELET</td>
<td>EVOLVE II</td>
<td>EVOLVE II</td>
<td>EVOLVE II</td>
<td>CONSISTENT</td>
<td>MULTISTARS AMI</td>
<td>MULTISTARS AMI</td>
<td>SCAAR</td>
</tr>
</tbody>
</table>

Boston Scientific is not responsible for the collection, analysis or reporting of the investigator-sponsored research output which is the sole responsibility of the investigators. Boston Scientific’s involvement in investigator-sponsored research is limited to providing financial support for research that advances medical and scientific knowledge about our products.

©2021 Boston Scientific Corporation or its affiliates. All rights reserved. IC-961006-AC JUN2021
A Clinical Case

in which SYNERGY MEGATRON was helpful
Case Sharing

- 46/M
- Cresendo type chest discomfort, since 1MA
 - Previously healthy
 - Recent recovery from COVID-19
Case Sharing
Case Sharing

DEB angioplasty to RI with Sequent Please NEO 2.25x20mm
DES implantation to mLAD with Synergy Megatron 3.5x24mm
Kissing ballooning to LAD with 2.5x15mm
Dg with 2.0x15mm
Case Sharing

DES implantation to LM-pLAD with Synergy Megatron 4.0x24mm

→ POT to LM

pre POT post POT
Successful PCI with 2 Synergy Megatron stents
FKB to LAD/Dg2 (rewiring)
Simple crossover to Dg1
POT to LM
IVUS to evaluate stent deformity
#1. Many efforts focus on PCI for Left Main disease.
 - Intravascular imaging, including IVUS, has many merits in LM PCI.
 - Especially, to evaluate any Stent deformity, which may be critical.

#2. Anatomic features of the Left Main disease require a DES with…
 High Radial and Axial Strength, Larger Overexpansion Range,
 Optimized Scaffolding, Visibility

#3. The Synergy Megatron Platform may be the best option for LM PCI!
Thank you for your attention

Any Questions are welcome to medikang@gmail.com