#### **Reducing Complications in CTO PCI**



Scott Harding Department of Cardiology Wellington Hospital





#### **Potential Conflicts of Interest**

I have the following potential conflicts of interest to report:

Grant/Research Support: Asahi Intecc

Proctoring Fees/ Speakers Honoraria: Boston Scientific, Medtronic, Abbott Vascular,

Kaneka, Bio-Excel, Teleflex Medical

Global Consensus Recommendations on Improving the Safety of Chronic Total Occlusion Interventions

Dr Eugene B Wu, Dr Arun Kalyanasundaram, ES Brilakis, K Mashayekhi, E Tsuchikane.

147 authors from 139 centres in 52 countries developed12 sets of recommendations for the prevention, earlyrecognition, and treatment of CTO PCI complications

# 1. Set up for Safe CTO PCI

- Procedural check list and formal time out
- Access to appropriate equipment
- Careful reading of the angiogram
- Be familiar with complications that may occur and have an algorithmic approach to solving them
- Create a horizontal cath lab team
- Establish an emergency response team for the cath lab



### 2. Guide Catheter Associated Vessel Injury



### Dissection or Equipment Related Donor Vessel Injury

Caution with:

- Extra backup guides deep seated for support
- Forceful contrast injections
  - Particularly if there is pressure damping
- Donor vessel disease
- Externalizing
  - Disengage and watch donor guide
  - Protect donor vessel collaterals with microcatheter

Management latrogenic Dissection

STOP INJECTING CONTRAST disconnect injector

**STOP INJECTING CONTRAST** 

disconnect injector

### **latrogenic Aortic Dissection**

- 1) STOP antegrade contrast injection
- 2) Fix the ostium with a stent (or even covered stent)
- 3) Echocardiogram
- 4) Reverse heparin (once gear is out of coronaries)
- 5) CT scan
- 6) Surgical consult
- 7) Blood pressure/heart rate control



#### Iatrogenic Aortocoronary Dissection During Percutaneous Coronary Intervention

**Investigation and Management** 

John Hung, MBC<sub>H</sub>B,<sup>a</sup> Joel P. Giblett, MD, BM, BSc<sup>b,c</sup> JACC: Case Reports 2021

Emerging evidence suggest that most iatrogenic aortic dissections can be managed conservatively in the absence of haemodynamic compromise

#### CT scan at baseline Following PCI



CT scan at 24 hours later





# Major dissection of the donor artery



#### latrogenic coronary artery dissection



#### Major dissection of the donor artery





#### Importance of a Safety Wire in the Donor Vessel



#### 4. Hemodynamic collapse during CTO PCI



#### Hemodynamic Collapse: Your Checklist

#### **Differential Diagnosis**



Treatment Based on Primary Etiology of Hemodynamic Collapse

#### 5. Side Branch Occlusion.



# Subintimal carina shift



Gutiérrez-Chico. Cardiol J. 2023; 30: 24-35.



#### The Danger of Direct Retrograde Wiring



# Subintimal retrograde wire path with direct retrograde wiring



#### 6. Perforations.



Main Vessel Perforations

**Distal Perforations** 

**Collateral Perforations** 

### **PROGRESS CTO Registry: Mortality**

#### 5/2012 to 12/2017

20 centers, 3,122 lesions in 3,055 patients

- MACE 3%
- Perforation 4%
- Equipment loss 0.2%
- Tamponade requiring pericardiocentesis 0.7%
- Vascular access complications 1.4%
- Bleeding 1%
- Dissection/thrombus of donor vessel 1%
- Aortocoronary dissection 0.1-0.2%

**Definition:** death, MI, recurrent symptoms requiring urgent revascularization with PCI or CABG, tamponade requiring either pericardiocentesis or surgery and stroke

### PROGRESS CTO Registry: Mortality

#### Causes of death



- perforation/tamponade (6)
- cardiogenic shock (4)
- other cardiovascular (2)
- unspecified (2)
- MI (1)
- stroke (1)
- multiple ogan failure (1)
- hemorrhagic shock (1)
- respiratory failure (1)

#### Mortality (0.8%)

Most common cause of death is perforation/tamponade

#### Avoid High Penetration Force Wires in Ambiguous Anatomy





#### Avoid Use of High Risk Collaterals





Azzalini L et al. EuroIntervention 2019

#### Protamine is Your Friend

- UWMC 2014-2018
- 160 CTOs c/b perforation
- Protamine use:  $0\% \rightarrow 78\%$
- Death: 22% → 2%
- No stent thrombosis



Kataruka et al. J Am Coll Cardiol. 2020 Mar, 75 (11\_Supplement\_1) 1293

### Protamine is Your Friend

- How
  - Get all equipment out first!
  - 25 mg over 5 min (to avoid hypotension)
- Myths
  - Anaphylaxis: 0.19% incidence based on systematic review of ~18,000 patients<sup>1</sup>
  - Stent thrombosis: No large volume high-quality data to support the association (in patients on DAPT and not having ACS!)

<sup>1</sup>Levy JH. Anesth Analg 2008;106:392-403.

#### 8. Vascular Access

- Biradial
- USS guided femoral access
- Micropuncture set
- Final cross over angiography
- USS to confirm closure



# 9. Contrast-induced acute kidney injury.

Reducing contrast toxicity:

- Hydration
- Discontinuation of nephrotoxic medications
- Avoid hypotension

Reducing contrast volume:

Keep contrast volume to <3x eGFR and ideally <2x eGFR

Contrast volume can be reduced by:

- Careful analysis of previous angiograms / CT
- Optimal timing of the antegrade contrast injection to coincide with maximal retrograde filling
- Microcatheter tip injections both antegrade and retrograde (through the most dominant collateral
- Use of the retrograde approach
- Use of biplane
- Use of IVUS.

# 10. Radiation Injury.

- A) Radiation injury in CTO PCI. <5 Gy
- B) Prevention.
- i) Reduce total radiation dose.
  - low magnification and collimation, using ≤7.5 frame per second fluoroscopy, avoiding steep angles, using the fluoroscopy store function instead of cine angiography, avoidance of panning. using the trapping technique for device exchanges, using a marker torquer on wires, Some X-ray systems stop imaging when the operator's eyes are not looking at the screen reducing unnecessary fluoroscopy radiation.
- ii) Reduce radiation concentration.
  - Some angiography machines software to display skin dosage information, Disposable radiation shields (such as the Radpad)
- C. Patient follow up.
  - Patient who receives high radiation dose (> 5 Gy) should receive patient information sheets, followed by clinical examination and photography after 30 days.

#### 11 When to Stop

# consider Investment procedure

nons erator experience **Operator fatigue** 

## 12. Proctoring

Proctoring improves success and safety



Sharma V et al. Open Heart 2015;2:e000228.

# Conclusions:

| - Before | Know what can go wrong – what causes it –<br>and how to fix it                                                                                       |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Study the angiogram and the patient                                                                                                                  |
| – During | Do not do risky things (unless potential benefit > risk)<br>Early detection and Rx of complications<br>Have an algorithmic approach to complications |
| – After  | Reflect: What did I learn?<br>How can we do better next time?                                                                                        |