MINOCA Physiology Work-up - Brief reviews and cases -

Joo Myung Lee, MD, MPH, PhD

Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea

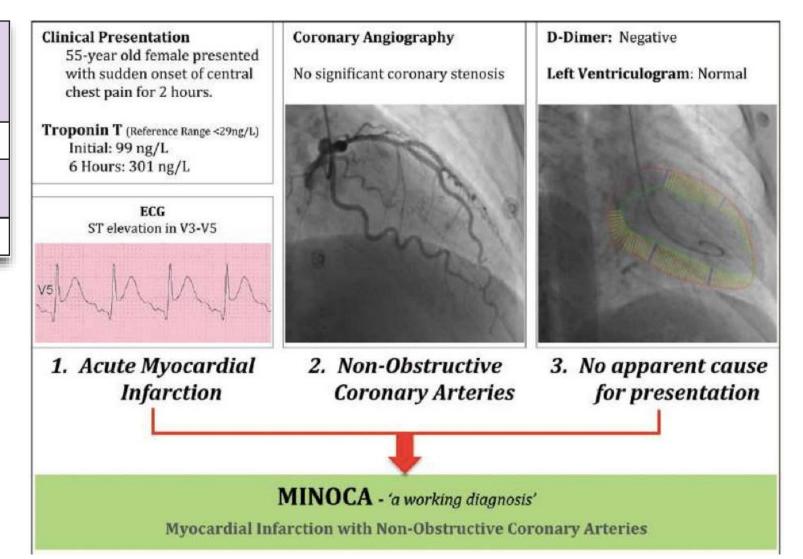
Disclosures

Relationships with commercial interests:

- Grants/Research Support: Abbott Vascular, Boston Scientific, Philips Volcano, Terumo Corporation, Donga-ST, Zoll Medical, and Yuhan Pharmaceutical
- Speakers Bureau/Honoraria: Abbott Vascular, Boston Scientific
- Consulting Fees: Genoss
- Other: None

SAMSUNG MEDICAL CENTER SAMSUNG

Definition of MINOCA


The diagnosis of MINOCA is made immediately upon coronary angiography in a patient presenting with features consistent with an AMI, as detailed by the following criteria:

(I) Universal AMI criteria⁸

(2) Non-obstructive coronary arteries on angiography, defined as no coronary artery stenosis ≥50% in any potential IRA

(3) No clinically overt specific cause for the acute presentation

MINOCA is a working diagnosis with multiple causes

Prevalence of MINOCA

In 1939 earlier report, In Meta-analysis (N=176,502), 8% AMI showed minimal or normal coronary artery prevalence of MINOCA was 6% (range 1-14%)

MYOCARDIAL	INFARCI	TION	WITHOUT	SIGNIFICANT
	LESIONS	OF	CORONARY	
	A	RTER	RIES	

HARRY GROSS, M.D. AND WILLIAM H. STERNBERG, M.D. NEW YORK

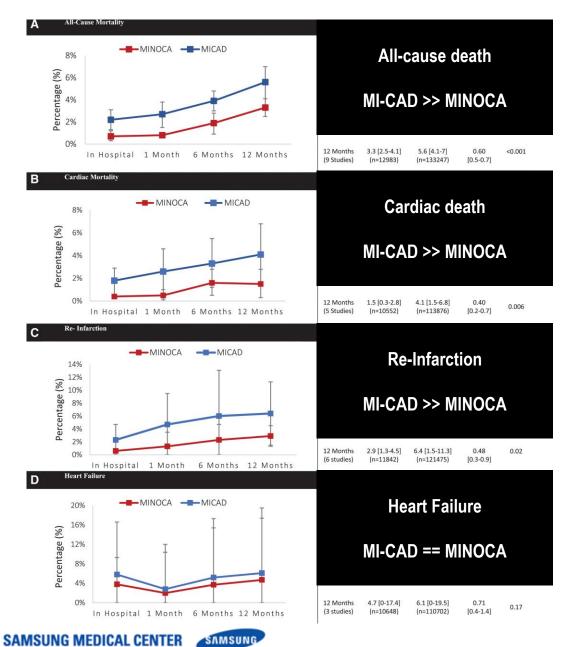
The occurrence of major myocardial damage with a minimum or even absence of coronary disease is not rare. S. A. Levine⁵ cited 11 of his own cases studied at autopsy in which major myocardial lesions were accompanied by corresponding disease of the coronary arteries. In a study of 100 cases of myocardial infarction Lisa and Ring⁶ found 8 in which the lesions in the vessels were minimal or the vessels were normal. Barnes and Ball,⁷ Brown,⁸ Davenport⁹ and others observed

-	Proportion (95% CI)	% Weig
Larsen, 2013 - 🛏	0.04 (0.03, 0.04)	4.07
Collste, 2013 -	0.06 (0.06, 0.07)	4.06
Sun, 2012-	0.02 (0.00, 0.03)	3.68
Rhew, 2012 - H⊷→	0.08 (0.07, 0.10)	3.86
Hamdan, 2012	0.09 (0.04, 0.14)	2.31
Aldrovandi, 2012 - 🛏	0.04 (0.03, 0.04)	4.04
Agewall, 2012	0.07 (0.03, 0.11)	2.69
Tritto, 2011 - +++	0.05 (0.04, 0.06)	3.96
Leurent, 2011 - 🛛 🛏 🛏	0.13 (0.11, 0.16)	3.59
Kang, 2011 - 🗰	0.04 (0.04, 0.05)	4.09
Uchida, 2010 - 🖂 🕂 +	0.08 (0.04, 0.12)	2.73
Frycz-Kurek, 2010 - 🔹	0.03 (0.03, 0.03)	4.11
Gehrie, 2009 - 🛛 🕷	0.10 (0.09, 0.10)	4.11
Baccouche, 2009 - 🛏 🛏	0.14 (0.12, 0.16)	3.71
Ong, 2008 - i⊢ + i	0.10 (0.07, 0.13)	3.09
Ahmar, 2008 - ⊢+ <mark>-</mark>	0.06 (0.07, 0.07)	3.79
Larson, 2007 - →	0.04 (0.03, 0.05)	3.97
Widimsky, 2006 - ⊢⊷⊣	0.03 (0.02, 0.04)	3.97
Strunk, 2006 - ⊢ + +	0.08 (0.05, 0.10)	3.43
Patel, 2006 - 👘	0.09 (0.08, 0.09)	4.11
Larsen, 2005 -	0.07 (0.07, 0.08)	4.08
Germing, 2005 - 🛏 🛏	0.06 (0.04, 0.08)	3.68
Hung, 2003 - 🕴 🔶 🕂	0.10 (0.06, 0.14)	2.67
Gehani, 2001 - 🛛 ⊢←-¦	0.05 (0.04, 0.06)	3.99
Hochman, 1999 -	0.07 (0.06, 0.07)	4.05
Zimmerman, 1995 - 🔎	0.04 (0.04, 0.05)	4.10
Sharifi, 1995 - 🖂	0.01 (0.00, 0.02)	4.07
Overall (I-squared = 99%, p=0.000)	0.06 (0.05, 0.07)	100.00
0.0 0.1	0.2	

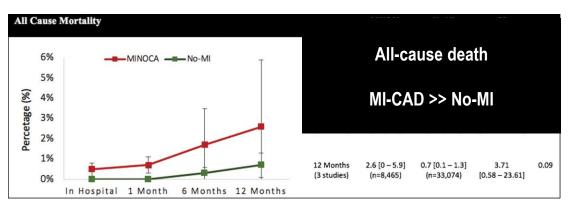
Note: Weights are from random effects analysis

SAMSUNG MEDICAL CENTER SAMSUNG

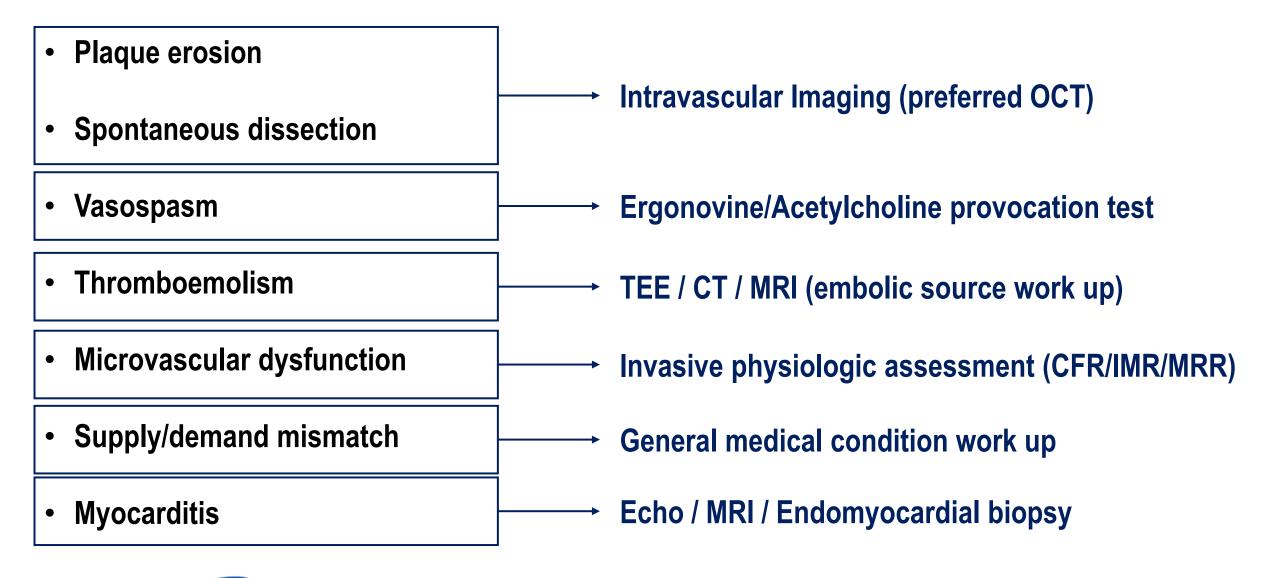
Prognosis of MINOCA


All-Cause Mortality In-hospital mortality – 5 studies (N=9564) 12-month mortality – 4 studies (N=1924)

	C	Comparative Studies			
All-Cause	MI-CAD	MINOCA	OR (95% Cl)	All MINOCA	
Mortality	% (95% CI)	% (95% CI)	<i>P</i> Value	Studies	
In-hos <mark>pital</mark>	3.2%	1.1%	0.37 (0.2–0.67)	0.9%	
	(1.8%, 4.6%)	(-0.1%, 2.2%)	<i>P</i> =0.001	(0.5%, 1.3%)	
12-month	6.7%	3.5%	0.59 (0.41–0.83)	4.7%	
	(4.3%, 9.0%)	(2.2%, 4.7%)	<i>P</i> =0.003	(2.6%, 6.9%)	

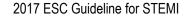

In this meta-analysis, all-cause mortality of MINOCA was lower than MI-CAD

Prognosis of MINOCA


Collaborative Meta-analysis of 23 studies 55,369 MINOCA, 485382 MI-CAD, 33074 No-MI

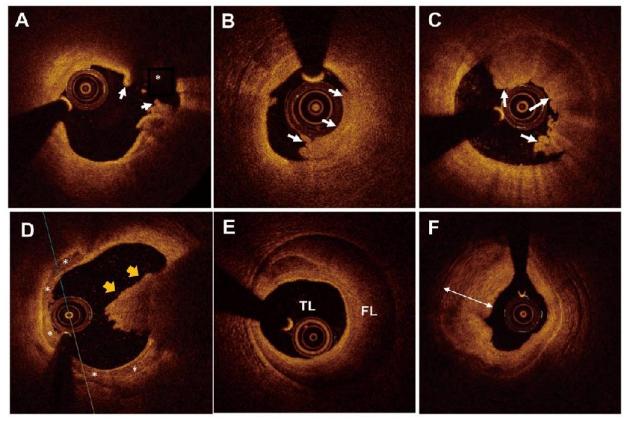
Comparative Prognosis All-cause mortality MI-CAD >> MINOCA >> No-MI

Generally, MINOCA showed better clinical outcome than MI-CAD for Death or Re-MI.

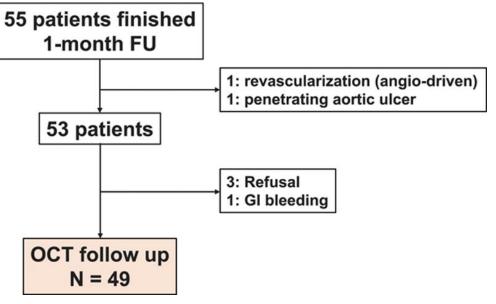

Potential Underlying Causes of MINOCA

Potential Underlying Causes of MINOCA - Guideline recommendations -

	Non-invasive	Invasive
yocarditis	TTE Echo (pericardial effusion) CMR (myocarditis ² , pericarditis)	Endomyocardial biopsy (myocarditis)
oronary icardial/ ovascular)	TTE Echo (Regional wall motion abnormalities, embolic source) CMR (small infarction) TOE/Bubble Contrast Echo (Patent foramen ovale, atrial septal defect	IVUS/OCT (plaque disruption/dissection) Ergonovine/Ach test ¹ (spasm) Pressure/Doppler wire (microvascular dysfunction)
ocardial isease	TTE Echo CMR (Takotsubo, others)	
ılmonary mbolism	D-dimer (Pulmonary embolism) CT scan (Pulmonary embolism) Thrombophilia screen	
/gen supply/ nd imbalance- Гуре 2 MI	Blood tests, Extracardiac investigation]


Role of Cardiac MR

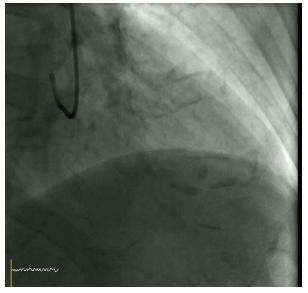
Role of Intravascular Imaging

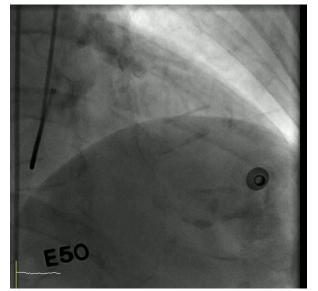

OCT/IVUS can detect hidden plaque rupture, erosion, thrombus OCT can also provide further therapeutic decision in plaque erosion

Plaque Erosion Images (from Pf. Kubo T.)

OCT-based Plaque Erosion and no Stenting (EROSION STUDY)

53 Patients with plaque erosion by OCT Conservative treatment without stenting




92.5% of patients were free of MACE

Kubo T et al. Circ J. 2018 Jan 25;82(2):302-308. Xing L. et al. Circ Cardiovasc Interv. 2017;10:e005860.

F/75, STEMI

Role of Provocation test

Prospective registry of 80 Patients with MINOCA Acetylcholine provocation: LCA (20-200ug), RCA (20-50ug), 2-3min Ergonovine: LCA (8-64ug), RCA (8-40ug), 2-3min

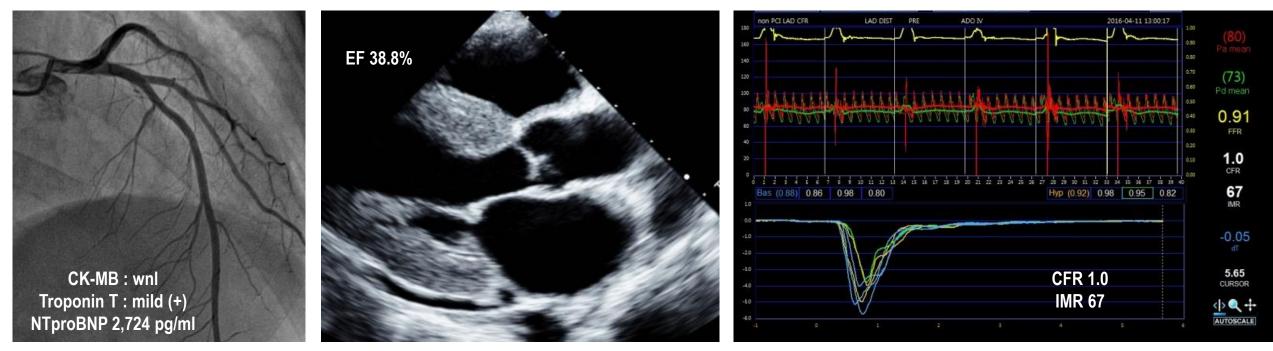
Diagnostic Criteria	≥90% epicardial spasm	Reproduction of Sx	Ischemic ECG change
Epicardial Spasm	0	0	0
Microvascular Spasm	X	0	0

Provocation test was positive in 46.2%.

Among these patients, epicardial spasm 64.9%, microvascular spasm 35.1%. No procedural complication

Table 2 Clinical outcomes of overall population and according to invasive provocative test response

	Total population (n = 80)	Positive functional test (n = 37)	Negative functional test (n = 43)	P-value
Death from any causes, n (%)	14 (19.7)	12 (32.4)	2 (4.7)	0.002
Cardiac death, n (%)	7 (9.4)	7 (18.9)	0 (0)	0.005
Recurrence of acute coronary syndrome, n (%)	13 (17.5)	10 (27.0)	3 (7.0)	0.015
Seattle Angina Score (n), median (range)	100.0 (33.0-100.0)	88.0 (33.0-100.0)	100.0 (44.0-100.0)	0.001
Median follow-up time (months), median (range)	36.0 (12.0-60.0)	24.0 (12.0-60.0)	36.0 (12.0-60.0)	0.49



Role of Microcirculatory Dysfunction in MINOCA

In working diagnosis of MINOCA,

CMD can be rare cause of cardiac enzyme elevation and chest pain CMD is a syndrome originated from heterogeneous causes

F/57, Recent chest pain and dyspnea on exertion

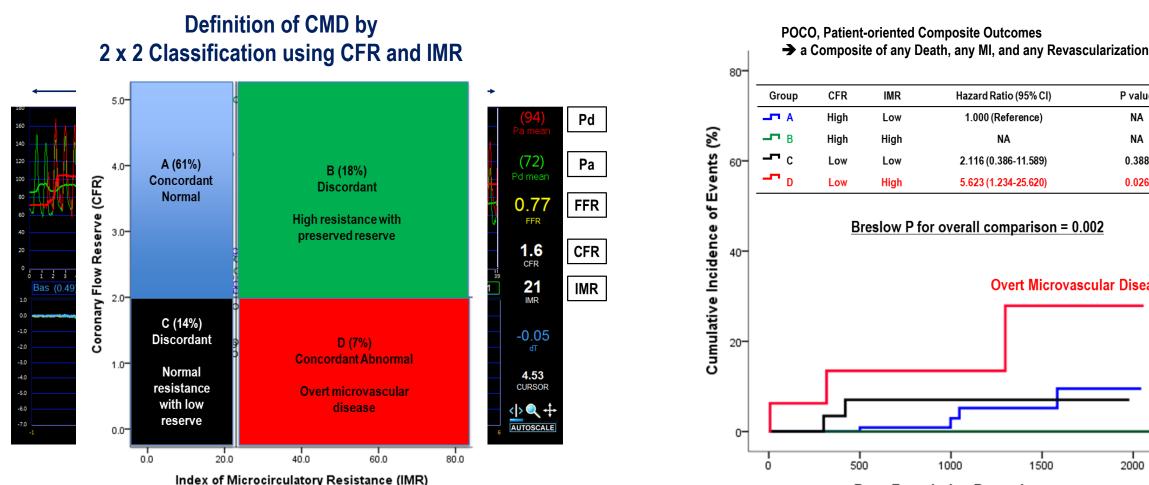


Consultation to HF Specialist and Endomyocardial Biopsy Final Diagnosis : ATTR cardiac amyloidosis

SAMSUNG MEDICAL CENTER SAMSUNG

Cardiac Amyloidosis registry, NCT02798705, J Am Coll Cardiol. 2020 Feb 11;75(5):560-561

Coronary Physiology and Cardiac Amyloidosis



SAMSUNG MEDICAL CENTER SAMSUNG

Choi KH... Lee JM/Jeon ES, J Am Coll Cardiol. 2020 Feb 11;75(5):560-561.

Residual Microcirculatory Dysfunction after CTO PCI - How to define CMD? -

230 Stable IHD Patients with FFR>0.80, Stratified by CFR (≤2.0) and IMR(≥23U) measurement

Days From Index Procedure

1.000 (Reference)

NA

SAMSUNG MEDICAL CENTER SAMSUNG

Lee JM....Koo BK, J Am Coll Cardiol. 2016 Mar 15;67(10):1158-1169.

1500

Overt Microvascular Disease

P value

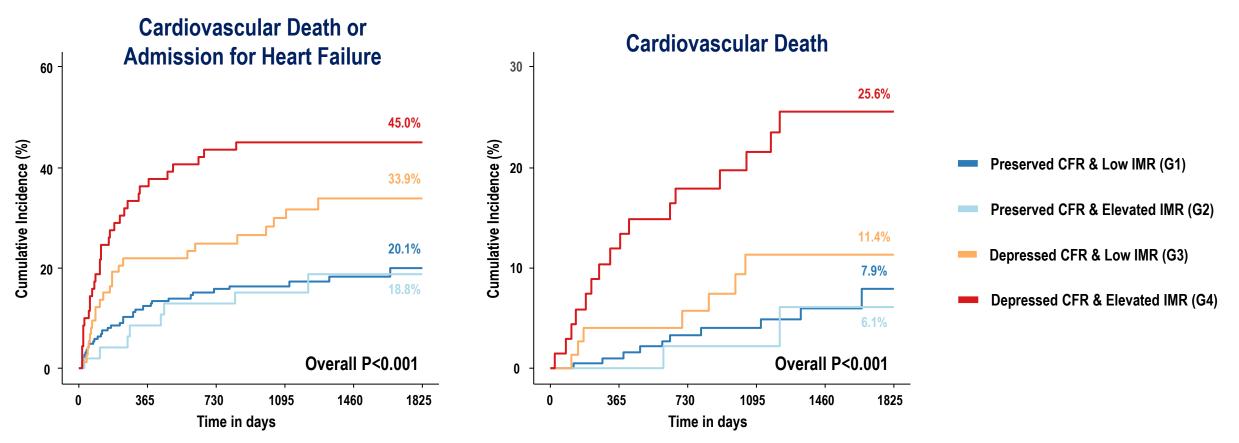
NA

NA

0.388

0.026

D


С

2000

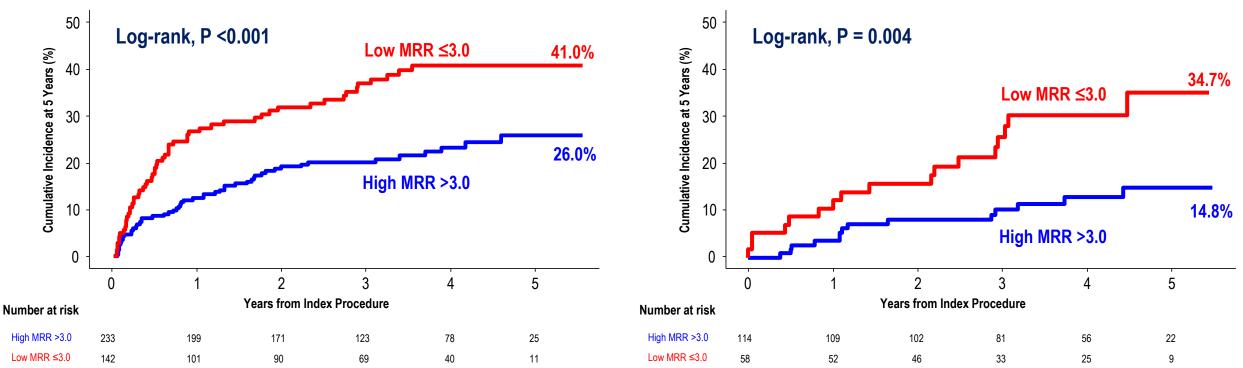
Residual Microcirculatory Dysfunction after CTO PCI - How to define CMD? -

DIAST-CMD Registry (NCT05058833)

547 consecutive patients undergoing comprehensive coronary physiologic evaluation Stable IHD 81.7%, ACS 8.6%, Ischemic CMP 9.7%, Median 3.3 Years of follow-up

Measurement variability (CFR), Influence from epicardial stenosis (CFR and IMR), Influence from subtended myocardial territory (IMR), Operator dependency (CFR and IMR)

SAMSUNG MEDICAL CENTER SAMSUNG


Hong D,,,,, Lee JM et al. Circ Cardiovasc Interv. 2023 Mar;16(3):e012621

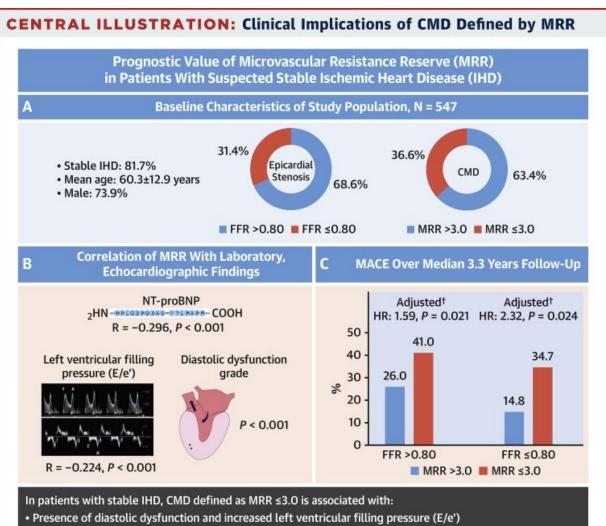
Residual Microcirculatory Dysfunction after CTO PCI - New Index – Microvascular Resistance Reserve (MRR) -

DIAST-CMD Registry (NCT05058833)

547 consecutive patients undergoing comprehensive coronary physiologic evaluation

MACE (a composite of CV death, MI, repeat revascularization, and admission for heart failure) during median 3.3 years MRR = [CFR/FFR] × [resting Pa/hyperemic Pa].

Insignificant epicardial disease (FFR >0.80)


SAMSUNG MEDICAL CENTER

SAMSUNG

Significant epicardial disease (FFR ≤0.80)

Lee SH,,,,, Lee JM et al. JACC Cardiovasc Interv. 2024 Mar 25;17(6):786-797

Prognostic Impact of Microcirculatory Dysfunction, defined by MRR

 Risk of a composite of cardiovascular death, myocardial infarction, repeat revascularization, and admission for heart failure, irrespective of significant epicardial coronary stenosis defined by FFR ≤0.80

Lee SH, et al. J Am Coll Cardiol Intv. 2024;17(6):786-797.

DIAST-CMD Registry (NCT05058833)

- 547 consecutive patients undergoing comprehensive coronary physiologic evaluation
- Stable IHD 81.7%, ACS 8.6%, Ischemic CMP 9.7%
- MRR = [CFR/FFR] × [resting Pa/hyperemic Pa].
- Depressed MRR ≤ 3.0 was associated with NTproBNP ↑, E/E' ↑, diastolic dysfunction grades ↑.
- Depressed MRR ≤ 3.0 was associated with higher risk of MACE, regardless of FFR during median F/U of 3.3 years.

Summary

- Prevalence of MINOCA 1 to 12% of STEMI patients
- MINOCA is working diagnosis and further clarification of underlying cause is crucial.
- Multimodality diagnostic work up including Cardiac MR, OCT/IVUS, provocation test, coronary physiologic assessment are needed.
- Coronary microcirculatory dysfunction (CMD) is rare cause of MINOCA. Only coronary physiologic assessment can reveal the hidden CMD.
- MRR is a simple and reliable diagnostic index to define CMD and also prognostic indicator, regardless of the presence of epicardial coronary stenosis.

