

Integration of Image-based Physiology and Plaque Vulnerability: Current and Future

Shengxian Tu, PhD, FACC, FESC

Cardiovascular Innovative Instrument and Intelligent Computing (CIIIC) Lab

School of Biomedical Engineering

Shanghai Jiao Tong University

April 19, 2024 思源

爱

Speaker's name: Shengxian Tu

 \blacksquare I have the following potential conflicts of interest to declare:

Co-founder: Pulse Medical

Receipt of grants / research support: Pulse Medical

Consultancy: Pulse Medical

Available Tools for Precise Lesion Assessment

FFR

P. / P. 0.72

Myocardial

ischemia

Coronary physiology

 A ruptured plaque responsible of cardiac death frequently appears as a thin-cap fibroatheroma (TCFA), characterized by a large lipid core, a thin fibrous cap (<65 µm), and active inflammation

Falk E et al., Eur Heart J 2013;34(10):719-28 Libby P, Circulation 1995;91(11):2844-50

Safety Concern of Deferred Revascularization: Vulnerable Plaque

• COMBINE OCT-FFR: TCFA presented in 25% of the patients with diabetes and ≥1 FFR-negative lesions and was associated with a nearly five-fold higher rate of MACE

Novel Al-powered Methods to Compute FFR, IMR and Plaque Vulnerability From Coronary Angiography

µQFR, AMR and RWS computed from a single angiographic view in 1 min

Huang J and Tu S, EuroPCR 2022 Best Innovation & Jon DeHaan Grant

Murray Law-Based Quantitative Flow Ratio (µQFR/µFR)

AngioPlus Core (Pulse Medical)

Comparison between µQFR and DS% for the prediction of FFR≤0.80

	µQFR ≤0.80	DS% ≥50%
Accuracy %	93.0 (90.2, 95.8)	76.5 (71.9, 81.1)
Sensitivity %	87.5 (80.2, 92.8)	57.5 (48.1, 66.5)
Specificity %	96.2 (92.6, 98.3)	86.7 (81.3, 91.0)
PPV %	92.9 (86.5, 96.9)	71.1 (61.0, 79.9)
NPV %	93.1 (88.9, 96.1)	78.1 (72.2, 83.2)
+LR	23.0 (11.6, 45.5)	4.3 (3.0, 6.3)
-LR	0.13 (0.08, 0.20)	0.49 (0.40, 0.60)

330 vessels, 306 patients

Two Views Is Not Always Better

$2D \mu QFR vs. 3D \mu QFR$

µQFR1 0.75 µQFR1 0.75 1 0.6 45%(1.4mm) 0.75 18.0 36.0 54.0 72.0 90

Ding, Tu, Wiins et al. JSCAI 2022; 1: 100399

$2D \mu QFR vs. 3D \mu QFR$

FFR ≤0.80 as reference

	µQFR1 ≤0.80	µQFR2 ≤0.80	3D-µQFR ≤0.80
Accuracy %	92.1 (89.0, 95.3)	92.5 (89.4, 95.6)	93.2 (90.3, 96.2)
Sensitivity %	88.1 (80.2, 93.7)	88.1 (80.2, 93.7)	90.1 (82.5, 93.7)
Specificity %	94.4 (90.0, 97.3)	95.0 (90.7, 97.7)	95.0 (90.7, 97.7)
PPV %	89.9 (82.2, 95.0)	90.8 (83.3, 95.7)	91.0 (83.6, 95.8)
NPV %	93.4 (88.7, 96.5)	93.4 (88.8, 96.5)	94.4 (90.0, 97.3)
+LR	15.8 (8.6, 28.9)	17.5 (9.2, 33.3)	17.9 (9.4, 34.0)
-LR	0.13 (0.07, 0.2)	0.13 (0.07, 0.2)	0.10 (0.06, 0.2)
AUC	0.96 (0.93, 0.98)	0.95 (0.92, 0.98)	0.95 (0.92, 0.97)

Single-view µQFR and two-view 3D-µQFR had comparable accuracy

Ding, Tu, Wijns et al. *JSCAI* 2022; 1: 100399

Diagnostic Performance of µQFR

797 patients, 877 vessels (feasibility 95.4%) with paired μQFR and FFR core lab, blinded analysis using the FLAVOUR* study population

Ding et al, Manuscript under review

Concept of Radial Wall Strain (RWS)

Hong H, Wijns W, Tu S et al., EuroIntervention 2022;18(12):1001-10

Implementation of RWS and µQFR

AngioPlus Core (Pulse Medical, Shanghai)

Radial Wall Strain (RWS)

RWS will be rapidly available after µQFR and co-registered with angiogram

RWS Identify Vulnerable Plaque Defined by OCT

EuroIntervention

VISUAL ILLUSTRATION. Radial Wall Strain: a Novel Angiographic Measure of Plaque Composition and Vulnerability

RWS Predicts Subseqent AMI

	All patients (n = 176)	AMI group (n = 44)	Control group (n = 132)	p value
Coronary artery location				1.000
LAD	52 (29.5)	13 (29.5)	39 (29.5)	
LCx	16 (9.1)	4 (9.1)	12 (9.1)	
RCA	108 (61.4)	27 (61.4)	81 (61.4)	
Coronary segment location				1.000
Proximal	60 (34.1)	15 (34.1)	45 (34.1)	
Middle	88 (50.0)	22 (50.0)	66 (50.0)	
Distal	28 (15.9)	7 (15.9)	21 (15.9)	
QCA-derived parameters				
MLD, mm	2.0 (1.7, 2.4)	1.9 (1.6, 2.4)	2.0 (1.7, 2.4)	0.409
DS%, %	34.0 (30.0, 40.0)	33.0 (29.0, 40.0)	34.5 (30.3, 40.0)	0.359
RVD, mm	3.0 (2.6, 3.6)	2.9 (2.5, 3.6)	3.1 (2.7, 3.6)	0.283
Lesion length, mm	13.0 (9.4, 16.9)	15.2 (10.4, 18.3)	11.9 (9.2, 16.5)	0.040
Vessel-level µQFR	0.91 (0.88, 0.94)	0.92 (0.88, 0.95)	0.91 (0.88, 0.94)	0.640
Lesion-level ΔµQFR	0.04 (0.02, 0.07)	0.04 (0.02, 0.07)	0.04 (0.02, 0.07)	0.725
RWS _{max} , %	10 (9, 13)	13 (13, 14)	10 (9, 11)	<0.001

Li, ..., Tu, Ge. J Am Coll Cardiol Interv 2023; 16:1039-1049

Combined µQFR-RWS Significantly Improves the Safety of Deferred Revascularization

Tu S, Wijns W et al., J Am Coll Cardiol 2023; 81(8):756-67

An Example Case

A 40-year-old patient presented with NSTEMI: the culprit sub-occlusive LCx stenosis was treated at the index procedure and the non-culprit RCA intermediate stenosis was deferred

Fezzi, Tu, Wijns, Ribichini et al. Eur Heart J Case Rep 2023; 7(8):ytad309

Limitations in Angiography-based Solutions

- Angiographic image overlap and significant foreshortening
- Post-PCI optimization: stent mal-apposition/under-expansion

OCT/IVUS-based FFR (OFR and UFR)

OFR

OctPlus (Pulse Medical, Shanghai, China)

IvusPlus (Pulse Medical, Shanghai, China)

UFR

High Diagnostic Concordance between OFR and FFR

	Pre-PCI	Post-PCI
Accuracy, % (95% CI)	91 (88, 94)	87 (82, 91)
Sensitivity, % (95% CI)	88 (83 <i>,</i> 93)	78 (67, 86)
Specificity, % (95% CI)	94 (90 <i>,</i> 97)	93 (88, 97)
Positive predictive value, % (95% CI)	93 (88 <i>,</i> 96)	88 (79 <i>,</i> 93)
Negative predictive value, % (95% CI)	90 (86 <i>,</i> 93)	87 (82, 91)
Positive likelihood ratio	15.11 (8.49, 26.88)	11.82 (6.22, 22.45)
Negative likelihood ratio	0.12 (0.08, 0.19)	0.24 (0.16, 0.36)

Hu, Wijns, Tu et al. EuroIntervention 2023:19(2):e145-54Gutiérrez-Chico, Tu et al. Cardiol J 2020;27:350-61Yu, Tu et al. EuroIntervention 2019;15:189-97Emori, Tu, Akasaka et al. Circ J 2020;84:2253-8Huang, Tu et al. EuroIntervention 2020;16:568-76Ding, Wijns, Tu et al. EuroIntervention 2021;17:e989-98

OCT-µFR from Co-registered Angiography and OCT

OCT-modulated Murray law-based QFR (OCT-µFR)

269 vessels from 218 patients with angio, OCT, and FFR measurement

Xu, Tu et al. JSCAI 2023; 101043

OCT-µFR from Co-registered Angiography and OCT

Xu, Tu et al. JSCAI 2023; 101043

Suboptimal angiographic image quality (109 vessels)

	OCT-μQFR ≤ 0.80	μQFR ≤ 0.80	р	
AUC	0.93	0.87	0.028	
Accuracy	90%	81%	0.056	

Optimal angiographic image quality (160 vessels)

	OCT-μQFR ≤ 0.80	μQFR ≤ 0.80	р
AUC	0.94	0.94	0.879
Accuracy	93%	93%	0.828

Al-powered OCT : Automated Plaque Characterization

OctPlus (version V2, Pulse Medical, Shanghai, China)

Chu M, Tu S et al., EuroIntervention 2021;17:41-50

Al-powered OCT: Validation against Expert Annotation () 上海交通大学

Diagnostic accuracy = 92.2% for basic plaque components

Lipid-to-cap Ratio (LCR): A New Vulnerability Index

Prediction of 2-year MACE for Non-culprit Vessels

604 ACS patients (915 vessels)

Prediction of 2-year MACE for Non-culprit Vessels

Hong H, Tu S, et al., JACC: Asia 2022; 2:460-72

Future: Inflammation and Biomechanics

• Inflammation: the major underlying mechanism of atherosclerosis

• **Biomechanical forces:** critical local factors affecting plaque initation, progression, and rupture

Engelen SE et al., Nat Rev Cardiol 2022;19(8):522-42

Brown AJ et al., Nat Rev Cardiol 2016;13(4):210-20

Integrated OCT, IVUS, NIFR, and PSS

Thank You!