ACS and Acute MI: Brand New Issues

Antithrombotic Therapy in ACS-PCI

Dominick J. Angiolillo, MD, PhD Professor of Medicine & Chief of Cardiology Medical Director - UF Health Cardiovascular Center Medical Director - Cardiovascular Research Program Director – Interventional Cardiology Fellowship University of Florida College of Medicine - Jacksonville

Presenter Disclosure Information

Name: Dominick J Angiolillo

Within the past 12 months, the presenter or their spouse/partner have had a financial interest/arrangement or affiliation with the organization listed below.

Received payment as an individual for:

a) Consulting fee or honorarium from: Abbott, Amgen, Astra-Zeneca, Bayer, Biosensors, Boehringer Ingelheim, Bristol-Myers Squibb, Chiesi, CSL Behring, Daiichi-Sankyo, Eli Lilly, Faraday, Haemonetics, Janssen, Merck, Novartis, Novo Nordisk, PhaseBio, PLx Pharma, Pfizer, Sanofi and Vectura;
b) Honorarium for participation in review activities (DSMB member) from National Institute of Health (NIH).
c) Honorarium from the American Board of Internal Medicine (Interventional Cardiology Subspecialty Exam Writing Committee Member)

Institutional payments for:

a) Grant support industry from: Amgen, AstraZeneca, Bayer, Biosensors, Celo-Nova, CSL Behring, Daiichi-Sankyo, Eisai, Eli Lilly, Faraday, Gilead, Idorsia, Janssen, Matsutani Chemical Industry Co., Merck, and Novartis.

b) Grant in gift: Spartan; Scott R. MacKenzie Foundation

c) Federal agency: NIH

Historical perspective and "current" status

- <u>Twelve months</u> of dual antiplatelet therapy (DAPT) with aspirin and the <u>adjunctive</u> use of a P2Y12 inhibitor has represented for over 2 decades the cornerstone of treatment for the prevention of thrombotic complications in ACS patients (CURE, TRITON, PLATO) – <u>Class I recommendation</u>.
- Prasugrel (ACS-PCI only; TRITON) and ticagrelor (invasive and noninvasively managed ACS; PLATO) are preferred over clopidogrel as P2Y12 inhibitor of choice in the absence of contraindications – <u>Class I recommendation</u>.
- Prasugrel preferred over ticagrelor (ISAR-REACT 5; ESC guideline only)

Considerations

- Prevention strategies of cardiovascular events post-ACS have changed over the past 10-20 years (e.g., aggressive LDL lowering), resulting in a reduction in ischemic event rates.
- Evolution in stent technology with safer platforms.
- Better understanding of the prognostic implications of bleeding complications (ie., increased mortality), shifting attention towards bleeding reduction strategies.

<u>Re-Consideration</u>: Is twelve month of intensified DAPT necessary in all patients?

Capodanno D, Angiolillo DJ et al, for the Academic Research Consortium. Circulation. 2023

By

<u>De-escalation</u>: Modulation of antiplatelet therapy consisting in changes in the antiplatelet effect by modification of: a) <u>drug</u>, b) dose or c) number aimed at reducing the intensity of platelet inhibition.

Goal: reduce bleeding while preserving efficacy

Capodanno D, Angiolillo DJ et al, for the Academic Research Consortium. Circulation. 2023

K-M estimate of time to first primary efficacy event (composite of CV death, MI or stroke)

Unguided de-escalation

Cuisset T, et al. Eur Heart J. 2017;38:3070-3078

Guided (Platelet Function/Genetic Testing) vs Standard Antiplatelet Therapy in Patients Undergoing PCI: A

Systematic Review and Meta-analysis (n=20743)

Galli M, Angiolillo DJ. Lancet 2021; 397: 1470-83

<u>De-escalation:</u> Modulation of antiplatelet therapy consisting in changes in the antiplatelet effect by modification of: a) drug, b) <u>dose</u> or c) number aimed at reducing the intensity of platelet inhibition.

Goal: reduce bleeding while preserving efficacy

Capodanno D, Angiolillo DJ et al, for the Academic Research Consortium. Circulation. 2023

Halving the dose

Prasugrel-based de-escalation of DAPT after PCI in patients with ACS

HOST-REDUCE-POLYTECH-ACS | OPEN-LABEL, MULTICENTER, NONINFERIORITY RANDOMIZED TRIAL

2,338	Dose adjustment (prasugrel 5 mg after 1 month)	Standard DAPT (aspirin + prasugrel 10 mg)			
Patients with acute coronary syndromes undergoing PCI on prasugrel 10 mg daily	DA N=1,17	DD _{N=1,16}			
Death, MI, stroke, ST, revascularisation, BARC	7.2%	10.1%			
≥2 bleeding at 1 year	ARD -2.9%, P _{NI} <0.0001; HR 0.7	0 [95% CI 0.52-0.92], P _{EQ} =0.012			
MACE	1.4% P=0	1.8%			
BARC ≥2 bleeding	2.9% P<0.	4.9%			
A prasugrel-based dose de-escalation strategy from 1 month after PCI reduced the risk of NACE up to 1 year					

Kim HS, et al. Lancet 2020;396:1079-1089

De-Escalation Strategies ARC Definition

By Dose Reduction By Discontinuation

Short DAPT

ASA P2Y12-i Monotherapy

Capodanno D, Angiolillo DJ et al, for the Academic Research Consortium. Circulation. 2023

Numerous studies have shown that shortening DAPT by stopping the P2Y12 inhibitor at 6 months or sooner and maintaining aspirin monotherapy reduces bleeding without "apparent" trade-off in efficacy –but the devil is in the details.

Trials of P2Y₁₂-i discontinuation in ACS

S	MART-DAT	E	REDUCE-ACS			DAPT-STEMI		
MULTICENTE	R, RANDOMIZED,	OPEN-LABEL	MULTICENTE	ULTICENTER, RANDOMIZED, OPEN-LABEL		MULTICENTER, RANDOMIZED, OPEN-LABEL		
2,712 Patients with	Short DAPT (P2Y ₁₂ -i 6-mo)	Standard (P2Y ₁₂ -I 12-mo)	1,496 Patients with	Short DAPT (P2Y ₁₂ -i 3-mo)	Standard P2Y ₁₂ -I 12-mo	870 Patients with STEMI on	SAPT (aspirin only)	DAPT (P2Y ₁₂ -l 18-mo)
or STEMI			or STEMI		4848	DAPT, event- free at 6 mo		
MACE	4.7%	4.2%	NACE	8.2%	8.4%	NACE	4.8%	5.5%
	P _{NI} =0.03			P _{NI} <0.001			P _{NI} =0.004	
МІ	1.8%	0.8%	ST	1.6%	0.8%	МІ	1.8%	1.8%
Short DAPT was NI (but unsafe?)			Short DAPT was NI (but unsafe?)		Short DAPT was NI (large NI margin)			

Lancet 2018;391:1274-1284

EuroIntervention 2019;15:e990-e998

BMJ 2018;363:k3793

P2Y₁₂ inhibitor SAPT after PCI

Safety and Efficacy of P2Y₁₂ Inhibitor Monotherapy Versus DAPT in Patients After PCI

STUDY-LEVEL META-ANALYSIS OF GLOBAL LEADERS, SMART-CHOICE, STOPDAPT-2, TWILIGHT, TICO

32,145 Patients who received short DAPT after PCI	P2Y ₁₂ inhibitor SAPT (n=16,057)	Standard DAPT (n=16,088)			
Primary bleeding outcome	2.0% HR 0.60	(0.45-0.79) 3.1%			
Major bleeding (BARC 3 or 5)	1.2% HR 0.60	(0.42-0.86) 1.8%			
Primary MACE outcome	2.7%	3.1%			
Death	1.3%	1.5%			
Myocardial infarction	1.1%	1.3%			
Stroke	0.6%	0.6%			
Stent thrombosis	0.5%	0.4%			
Long DAPT significantly reduced NACE in non-HBR patients undergoing complex PCI					

O' Donoghue ML, et al. Circulation. 2020;142:538-545

Not All P2Y12 Inhibitors are Created Equal!

Trials of aspirin discontinuation in ACS

TICO				STOPDAPT-2 ACS			
MULTICENTER, RANDOMIZED, OPEN-LABEL			MULTICENTER, RANDOMIZED, OPEN-LABEL				
3,056 ACS patients who underwent PCI at 38 hospitals in South Korea	Ticagrelor (after 3-mo of DAPT)	DAPT (12-mo)		4,169 ACS patients who underwent PCI at 96 hospitals in Japan	Clopidogrel (after 1/2-mo of DAPT)	DAPT (12-mo)	
NACE at 12 mo	3.9%	5.6%		NACE at 12 mo	3.2%	2.8%	
Major bleeding	1.7% P=0	0.02 3.0%		Major bleeding	0.5% P=	Sig. 1.2%	
3-mo DAPT resulted in significantly lower NACE			1-mo DAPT was not noninferior for NACE				
			-				

Kim BK, et al. JAMA. 2020;323:2407-2416

Watanabe H. JAMA. 2019;321:2414-2427

Strategies for tailoring antithrombotic therapy according to individual ischaemic and bleeding risk. ...

Personalized approach to antiplatelet therapy in coronary artery disease

One Size Does NOT Fit All

