Innovation in TAVR: What can expect from the next decade?

David J. Cohen, M.D., M.Sc.

Cardiovascular Research Foundation, New York, NY St. Francis Hospital, Roslyn NY USA

TCT-AP 2024- 10 mins

Disclosures

Research Grant Support

- Edwards Lifesciences
- Boston Scientific
- Corvia
- CathWorks
- Zoll/Therox
- JenaValve

Consulting/Advisory Boards

- Medtronic
- Boston Scientific
- HeartBeam

- Abbott Vascular
- Medtronic
- Philips
- I-Rhythm
- JC Medical

- Edwards Lifesciences
- Abbott Vascular

NEW TECHNOLOGIES IN TAVR DESIGN

Aortic Regurgitation

- Dedicated TAVR Systems for AR
- ALIGN AR Trial

Leaflet Modification Techniques

- Concept and Rationale
- Electrosurgery BASILICA
- The SHORTCUT Device and EFS

New Leaflet and Valve Designs

2

- DurAVR concept
- FOLDAX polymer leaflets
- SIEGEL Rhenium-Molybdenum Valve

NEW TECHNOLOGIES IN TAVR DESIGN

Aortic Regurgitation

- Dedicated TAVR Systems for AR
- ALIGN AR Trial

Leaflet Modification Techniques

- Concept and Rationale
- Electrosurgery BASILICA
- The SHORTCUT Device and EFS

3 New Leaflet and Valve Designs

2

- DurAVR concept
- FOLDAX polymer leaflets
- SIEGEL Rhenium-Molybdenum Valve

TAVR in Aortic Regurgitation Unmet Need

- Moderate/Severe AR is common in older patients → prevalence
 4.5% in New Ulm (Minnesota) study
- Severe AR is bad → Mortality ~10% per year with severe, symptomatic AR (~25% with NYHA III/IV symptoms)
- AR is undertreated → <25% of patients with severe, symptomatic AR undego SAVR
- Off-label TAVR with currently approved devices suboptimal → high rates of embolization and PVR

Alignment Aligns THV with native cusps

Positioning/Anchoring

Locators "clip" onto native leaflets forming a natural seal and stable securement

Deployment

Large open cells provide access to low coronaries; flared sealing ring conforms to annulus

Aortic Regurgitation *TRILOGY and ALIGN AR (n = 180 pts)*

Primary Safety Endpoint at 30 Days*

Hemodynamic Valve Performance

CRF

Paravalvular Regurgitation

Aortic Regurgitation J-Valve (from China)

- <u>**Bioprosthesis</u>**: self-expanding nitinol frame, bovine pericardial leaflets</u>
- <u>Delivery Sy</u> flexible cath access (18,
- Locating Fe designed to anatomy

Pivotal Clinical Trial Expected to Start in 2024

J-Valve TF Bioprosthesis

				-	Annulus	Annulus	Holak
	J-valve Locating Feature		Control Line (x3)	varve olze	Diameter	Perimeter	Heigr
reat	\wedge			22 mm	18-21 mm	57-67 mm	17 mi
	Anchor Ring		Attachment Point	25 mm	21-24 mm	65-76 mm	19 m
	of 5- valve biobrosticits		Nose Cone	28 mm	24-28 mm	73-88 mm	22 m
	J-Valve Anchor Ring conforms to the native sinuses			31 mm	27–30 mm	85–94 mm	25 mi
				34 mm	30–33 mm	94–104 mm	25 mi

J-Valve TF Delivery Device

Steering Knob

Safety Switches

Anchor Ring Release Knob Nosecone Toggle

Lock (unlocked)

Nosecone/Valve

Release Knob

 <u>Size matrix</u>: 5 sizes, can trea wide range of anatomies (perimeters 57-104)

NEW TECHNOLOGIES IN TAVR DESIGN LECTURE SUMMARY

Aortic Regurgitation

- Dedicated TAVR Systems for AR
- ALIGN AR Trial

Leaflet Modification Techniques

- Concept and Rationale
- Electrosurgery BASILICA
- The SHORTCUT Device and EFS

3 New Leaflet and Valve Designs

2

- DurAVR concept
- FOLDAX polymer leaflets
- SIEGEL Rhenium-Molybdenum Valve

U.S. ViV TAVR Projections

Genereux P, et al. JSCAI 2024

ViV TAVR Challenges

Leaflet Modification: BASILICA

Khan JM, et al. JACC Intv 2018

CAN WE MAKE LEAFLET MODIFICATION EASIER?

Accessories

Leaflet Modification Techniques Mechanical Splitting (SHORTCUT)

Designed to enable coronary access & prevent coronary obstruction during TAVI

Complete control over positioning & leaflet splitting location

Allows for safe, simple splitting of single or double leaflets using same device

The Splitter (HVT Medical)

- Electrosurgical partial leaflet excision and removal
- Allows visual confirmation of effective leaflet laceration

NEW TECHNOLOGIES IN TAVR DESIGN LECTURE SUMMARY

Aortic Regurgitation

- Dedicated TAVR Systems for AR
- ALIGN AR Trial

Leaflet Modification Techniques

- Concept and Rationale
- Electrosurgery BASILICA
- The SHORTCUT Device and EFS

3 New Leaflet and Valve Designs

- DurAVR concept
- FOLDAX polymer leaflets
- SIEGEL Rhenium-Molybdenum Valve

New Leaflet Designs *DurAVR Concept (Anteris)*

Single-piece, native-shaped biomimetic design

New Leaflet Designs *DurAVR Concept (Anteris)*

EFS Valve Performance (n=15)

Mean Annulus 22.2 mm

Hemodynamic Parameter	Mean (n=15)			
Mean Gradient				
Echo	7.8 mmHg			
Invasive	1.8 mmHg			
DVI	0.71			
EOA	2.4 cm2			

New Leaflet Designs TRIA Polymer Valve + Robotic Manufacturing (Foldax)

TRIA[™] Mitral Surgical Valve

Siloxane polyurethane

Similar structure used in pacing leads for over 15 years

TRIA[™] TAVR Gen 1 Valve

Polymeric Valve

- High tensile strength
- **Biologically inert**
- ? One valve for life?

New Valve Designs *Siegel Valve*

Delivered Crimped On Balloon Through 8 Fr Expandable Sheath

Slides courtesy of Pradeep Yadav, MD

Nickel (Nitinol) Aluminum-Vanadium

Poor Mechanical & Biological Properties

Nickel Chromium

Poor Mechanical & Biological Properties

Rhenium Superalloy

- 2-3x Strength
- 2-3x Durability
- <1/3 Recoil
- Superior Biocompatibility
 - Nickel Free
- Improved Radiographic Visibility

Slides courtesy of Pradeep Yadav, MD

Innovation in TAVR Summary

- Despite more than 15 years of commercial application, innovation in the TAVR space remains active
- Areas of innovation are focused on unmet needs and include TAVR for AR, novel approaches to leaflet modification, new leaflet and valve technologies, and expanding "upstream" indications
- Other promising areas include embolic protection systems and AI for procedural planning (including lifetime management)
- Stay tuned... the future is bright for TAVR!