Experimental Basis and Clinical Validation of FFR

William F. Fearon, MD Associate Professor of Medicine Director, Interventional Cardiology Stanford University Medical Center

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest /arrangement or affiliation with the organization(s) listed below

Affiliation/Financial Relationship Grant/ Research Support:	
Grant/ Research Support:	
Major Stock Shareholder/Equity Interest:	
Royalty Income:	
Ownership/Founder:	
Salary:	
Intellectual Property Rights:	

Other Financial Benefit (minor stock options):

<u>Company</u> St. Jude Medical NIH-R01 HL093475 (PI)

Medtronic

NIH-R01 HL093475 (PI)

HeartFlow

Fractional Flow Reserve (FFR)

Maximum flow down a vessel in the presence of a stenosis...

...compared to the maximum flow in the hypothetical absence of the stenosis

Pijls and De Bruyne, Coronary Pressure Kluwer Academic Publishers, 2000

Derivation of FFR

• FFR = $\frac{Coronary Flow (Stenosis)}{Coronary Flow (Normal)}$

- Coronary Flow = Pressure Resistance
- at maximal hyperemia Coronary Flow \approx Pressure

Derivation of FFR

• FFR = $\frac{Coronary Pressure (Stenosis)}{Coronary Pressure (Normal)}$

• Coronary Flow = Pressure Resistance

• at maximal hyperemia Coronary Flow \approx Pressure

Adapted from: Pijls and De Bruyne, Coronary Pressure Kluwer Academic Publishers, 2000

Adapted from: Pijls and De Bruyne, Coronary Pressure Kluwer Academic Publishers, 2000

Fractional Flow Reserve

Hyperemic Flow

Hyperemic Flow with Stenosis

Hyperemic Flow without Stenosis

Adapted from: Pijls and De Bruyne, Coronary Pressure Kluwer Academic Publishers, 2000

Validation of FFR

FFR compared to noninvasive "gold" standard of 3 stress tests (accuracy > 95%)

FFR < 0.75 : Sensitivity = 88% Specificity = 100%

Pijls, et al. New Engl J Med 1996;334:1703

FFR Validation Studies

Noninvasive Imaging

Study	Number of patients (lesions)	Ischaemic test	Best cut-off value	Accuracy (%)	Clinical setting					
Intravenous adenosine infusion (140 µg/kg/min)										
Pijls (1995) ³⁴	60 (60)	X-ECG	0.74	97	SVD					
Pijls (1996) ³³	45 (45)	X-ECG, MPS, DSE	0.75	93	SVD					
Jimenez-Navarro (2001) ¹²⁰	21 (21)	DSE	0.75	90	SVD					
Rieber (2004) ¹²¹	48 (48)	MPS, DSE	0.75	76-81	MVD					
Erhard (2005)122	47 (47)	MPS, DSE	0.75	77	MVD					
Hacker (2005) ¹²³	50 (50)	MPS	0.75	86	SVD					
Total or average (as applicable)	271 (271)	NA	0.75	87	NA					
Intracoronary adenosine bolus (maximum 40–60 µg)										
Tron (1995) ¹²⁴	62 (70)	MPS	0.69	67	1, 2, and 3-VD					
Bartunek (1997) ¹²⁵	37 (37)	DSE	0.67	90	SVD					
Caymaz (2000) ¹²⁶	30 (40)	MPS	0.75	95	SVD					
Fearon (2000)127	10 (10)	MPS	0.75	95	SVD					
Chamuleau (2001) ¹²⁸	127 (161)	MPS	0.74	77	MVD					
Seo (2002) ¹²⁹	25 (25)	MPS	0.75	60	Previous MI					
Kruger (2005) ¹³⁰	42 (42)	MPS	0.75	88	ISR					
Samady (2006)131	48 (48)	MPS, DSE	0.78	92	Previous MI					

FFR Validation Studies

Noninvasive Imaging

van de Hoef (2012)66*		232 (299)	MPS	0.76	74	MVD				
Total or average (as ap	plicable)	613 (732)	NA	0.74	83	NA				
Other method of vasc										
De Bruyne (1995) ³⁸ (Intracoronary papave	> 1,	500 Pá	atients	5	87	SVD				
Bartunek (1996) ¹³² (Intracoronary papave					81	SVD				
Abe (2000) ¹³³ (Intravenous ATP)	2	4 Stud		91	SVD					
De Bruyne (2001) ¹³⁴ (Intravenous or intrac or intravenous ATP)					85	Previous MI				
Yanagisawa (2002) ¹³ (Intracoronary papave	Best (Cut-Of	f Valu	e?	76	Previous MI				
Ziaee (2004) ^{136‡} (Intravenous or intrac					88	Ostial				
Morishima (2004) ¹³⁷ (Intracoronary papave		~ 07	' 5		85	SVD				
Kobori (2005) ^{138§} (Intracoronary papaver	ine)	< 0.7	J		70	Restenosis				
Ragosta (2007) ¹³⁹ (Intracoronary adenosis in the RCA, 80–100 µg	ne, 30–40 μg ; in the LCA)	36 (36)	MPS	0.75	69	MVD				

van de Hoef, et al. Nat Rev Cardiol 2013;10:439-52.

Safety of Deferring PCI Based on FFR

5 Year Cardiac Death and MI rate in DEFER trial

Pijls, et al. J Am Coll Cardiol 2007;49:2105-11.

Safety of Deferring PCI Based on FFR

5 year follow-up of 564 intermediate proximal LAD lesions deferred because FFR≥0.80

Adapted from: Muller, et al. JACC Cardiovasc Interv 2011;4:1175-82

What happens to deferred lesions?

FAME Study: One Year Outcomes

1,005 patients with multivessel CAD randomized to FFR or Angio-guided PCI

Tonino, et al. New Engl J Med 2009;360:213-24.

Real World FFR Use

2,178 pairs of propensity matched patients before and after routine FFR use

Repeat revascularization

Park SJ, et al. Eur Heart J 2013;34:3353-61.

Real World FFR Use

2,178 pairs of propensity matched patients before and after routine FFR use

Death or myocardial infarction

Park SJ, et al. Eur Heart J 2013;34:3353-61.

If the FFR is ≤ 0.80, is it unsafe to defer PCI?

FAME 2: Two Year Follow-Up

Two year rate of primary endpoint: Death, MI, Urgent Revascularization

De Bruyne, et al. NEJM 2014;371:1208-17.

FAME 2: Two Year Follow-Up

Landmark Analysis of Death/MI after 7 days

De Bruyne, et al. NEJM 2014;371:1208-17.

Relationship between FFR and MACE

607 medically treated patients in FAME 2

Barbato, et al. ESC 2013

FFR Meta-Analysis

Meta-analysis of a total of 9,173 (study-level) and 6,961 (patient-level) lesions in which FFR was measured and average follow-up of 16 and 14 months

Johnson, et al. J Am Coll Cardiol 2014;64:1641-54

FFR Meta-Analysis

Meta-analysis of a total of 9,173 (study-level) and 6,961 (patient-level) lesions in which FFR was measured and average follow-up of 16 and 14 months

Johnson, et al. J Am Coll Cardiol 2014;64:1641-54

Explosion of FFR Data

?

Conclusion:

 FFR is based on sound coronary physiologic principles.

- FFR is the only invasive index validated against a true noninvasive gold standard.
- FFR has a wealth of data validating it against clinical outcomes.

